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Abstract

Nowadays, Lithium-ion battery is widely utilized in various fields: electric vehicles (EV),

energy storage system (ESS), and portable devices. Depending on the usage requirements, a

hundred or even a thousand battery cells are serially connected in the battery power systems.

The aging of cells during the operation leads to inconsistency between the cells, which is

reduce the reliability and safety of the system. Besides, the battery pack will be replaced

when its state of health (SOH) is below 80%. Due to the economic and environmental issues,

the retired battery pack is reutilized as a second life battery for the systems that require

less performance, eg: BESS. The batteries in a pack should be monitored or classified for

other purposes. Therefore, the state of health and state of charge (SOC) estimation of the

individual cell are extremely necessary.

In previous battery estimation, SOC is estimated by the column counting method and

OCV method. These methods are easy to implement and require a low computational burden.

However, the estimation accuracy is not only dependent on the error accumulating in the

current sensor but also sensitive to temperature and aging. The data-driven method can

obtain a high accuracy of SOC estimation without the battery model. Nevertheless, this

method requires numerous data and can be limited by computational burden. Although

Kalman-filter-based battery state estimation is one of the most popular methods, it is sensitive

to the accuracy of the battery model parameters and difficult to be applied to every cell.



This work proposes an online cell-by-cell SOC/SOH estimation method to mitigate

this limitation. The aging patterns of the individual cells are predicted by introducing a

combination of a switch-matrix flying capacitor and electrochemical impedance spectroscopy

(EIS) model parameter scanning techniques. Accordingly, the accuracy of the SOC estimation

for individual cells is enhanced. The proposed method is verified by a real-time simulation

platform, where the SOC and SOH levels of the cells are individually estimated within a

1.63% RMSE.

Keywords battery cell, battery estimation, battery model, EIS, EKF calibration, inte-

grated impedance measurement
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Chapter 1

Introduction

1.1 Motivation and problem description

As a more environmentally friendly method of transportation, battery electric vehicles (EVs)

are attracting a lot of global attention [1]. The battery energy storage system (BESS)

effectively overcomes the fossil fuel crisis and environmental pollution, considered the major

hurdle for the automobile industry [2]. The market share of BESS is growing faster [3] due

to their advantages such as lightweight, fast charging, high energy density, low self-discharge,

and long lifespan [4]. In recent electric vehicle development, a new cell-packing structure is

emerging such as a cell-to-pack technology that directly embeds the cells in the pack and

eliminates modules. Besides, the battery pack is not only an enclosure but also a part of the

vehicle body structure, so-called as a cell-to-vehicle solution. Therefore, the number of cells

connected in series is further increasing.

Usually, the battery cells are screened, so as to have similar characteristics before being

grouped into a module or a pack [5]. However, it ensures the uniform performance of the cells

only in the first few operation cycles. It is because individual cells are operating in different

1



1.1 Motivation and problem description

cooling profiles and the aging patterns of the cells are dissimilar from each other. Therefore,

estimation results for the whole battery module or pack mostly fail to represent the state

of individual cells [6]. Since the aging patterns of the individual cells are dissimilar [7], the

mismatch in the battery characteristics can make the series string suffer from over-charging

and over-discharging [8].

This kind of problem becomes more severe in the second-life battery system, where the

retired battery pack from an EV is reused for BESS application. At this time, individual cell

characteristics are not as uniform as the new one [9]. For that reason, the battery state of

individual cells should be monitored by considering the aging characteristics of the individual

cell rather than a whole battery module or pack.

Since the state of charge level only can be estimated based on the battery voltage, current,

and temperature [10], battery state estimation techniques are actively investigated [11, 12].

For example, the Coulomb counting method estimates the SOC level of the cells by counting

the amount of charge that flows into or out of the cell. Due to its simplicity, it becomes the

most popular in industrial applications [13, 14]. Additionally, data-driven approaches such

as artificial intelligence-based techniques are becoming another trend. The machine learning

(ML) and the deep learning (DL) algorithms can accurately estimate the SOC level of the

cells [15]. However, the ML-based methods require a large dataset to train the model before

operation on site and the DL-based methods show a large estimation error in the first few

cycles showing a risk in safety. Besides, the required computation time is too much to gain

the practical feasibility and meet the cost requirements.

On the other hand, model-based methods can estimate the SOC level with high accuracy

and a low computation time [16]. For example, Kalman-filter-based battery state estimation

2



1.2 Objectives and contributions

is one of the most popular methods. However, it is reported that they are sensitive to the

accuracy of the battery model parameters. The impact of battery aging on the estimation

accuracy is mostly neglected even though it is shown to be significant [17]. To ensure the

estimation accuracy, the battery model parameters should be online monitored to reconfigure

the state space model.

In recent years, many studies apply machine learning to optimize the EKF algorithm.

In [18, 19], the authors utilize reinforcement learning to modify the parameters of EKF.

Although this approach could gain some impressive results because of self-learning ability

based on real collected data, it also has the limitations of data-driven methods such as a

variety of training data, a long training time, and high computation burden.

1.2 Objectives and contributions

In order to solve the problem mentioned in the previous section, this work proposes an

effective online cell-by-cell state-of-charge SOC/state-of-health SOH estimation method for

the series string. The impedance degradation of the cells is detected by utilizing an online

identification method. While the SOH is estimated based on the impedance degradation, the

model parameters of the individual cell are also calibrated. Besides, an EKF algorithm is

used to estimate the SOC level from the updated state space model and open circuit voltage

information.

The parameter reconfiguration process of one cell is demonstrated in Fig. 1.1. In the EIS

model identification block, the model parameters of the cell are identified. The proposed

method is developed for a switch-matrix flying capacitor circuit that is connected in turns to

the individual cells. Most of the equivalent model parameters of the cells can be estimated

3
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Fig. 1.1 Proposed SOH/SOC estimation method

based on the charge transfer theory of the switched capacitor circuit. Accordingly, the

EIS model is utilized to update the state space model for SOC estimation. The SOH

level is a function of Rt, which can be derived by applying the polynomial curve fitting

technique. Therefore, the SOH level is estimated directly from the measured Rt. Thenceforth,

the impedance degradation is detected to interpolate the SOH level. The corresponding

OCV–SOC relationship and the state space model of the EKF are reconfigured based on

the estimated SOH level. In virtue of the switch-matrix, the estimation process can be

implemented for the individual cells one by one. Furthermore, the proposed method is the

online method, which is applied based on the existing capacitor equalizer without detaching

the battery pack.
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1.3 Thesis Organization

1.3 Thesis Organization

The thesis includes the chapters listed below,

Chapter 1: INTRODUCTION - The research motivation and objective of Li-ion battery

technology for SOC is elaborately discussed in the section. At the time, the problem formu-

lation research objective and implementation technique os this thesis are briefly explained.

Chapter 2: BATTERY MODEL IDENTIFICATION AND SOH/SOC ESTIMATION -

The chapter mentions the overview of battery identification and SOH/SOC estimation. The

definition and conventional method are included, as drawbacks of each method, and switched

capacitor equalizer.

Chapter 3: PROPOSED ONLINE BATTERY MODEL IDENTIFICATION - the

integrated circuit structure is analyzed. This chapter proposed two current sampling strategies

to determine the battery parameter.

Chapter 4: PROPOSED SOH/SOC METHOD USING ONLINE MODEL IDENTIFI-

CATION - Apply battery model calibration for SOC estimation. This chapter introduces

how to update the EKF state equation based on online model identification and SOH value.

Chapter 5: EXPERIMENTAL VERIFICATION - The experimental conducting, data

collection tactics, parameter identification results, and simulation verification experiments

are extensively incorporated in this chapter. After then, compared the SOC with calibration

to SOC without calibration is making.

5



1.3 Thesis Organization

Chapter 6: CONCLUSIONS AND FUTURE WORK - Summarized the entire graduation

thesis design work, reviewed the all contents and the difficulties encountered in the design

process, and proposed some improvement measures.

6



Chapter 2

Battery model identification and

SOC/SOH estimation

2.1 Overview

The rising trend of transportation electrification is growing fast in recent years. Unfortunately,

bringing up the rear is a significantly retired battery pack of EV, which is forecasted to be up

to 120GWh by 2030 [20]. Since the labor cost for material recycling is too high that prevents

the practical feasibility [21, 22], re-utilize the retired battery packs of EV for BESS is a more

positive approach [9]. The challenge of the re-used battery applications is the performance

inconsistency of the battery cells after a diligent operation in EV duration [23]. Thus, a

high-performance battery management system (BMS) for individual cells is required.

Additionally, in EV and BESS, battery cells are connected in series to increase the oper-

ating voltage range. Although the characteristics of the cells are screened before assembling

[3], their behaviors are getting different during the aging [5]. Thus, a high-performance

7



2.2 Conventional model identification

BMS for individual cells is required. In general, the SOC and SOH of the cells should be

continuously monitored. Among various state estimation methods, the model-based SOC

estimation techniques show the best performance on the ground of accuracy [6]. However,

when it comes to system integration, most of the existing methods are only feasible for the

whole battery pack. Since the impact of cell inconsistency becomes more serious due to

battery aging, the estimation accuracy is significantly decreased without considering the

inconsistency between the cells. Thus, the individual cells should be characterized during

system operation to calibrate the coefficients of the estimator.

2.2 Conventional model identification

Various impedance measurement and model characterization methods are introduced in

[24], where the sinusoidal injection is the textbook scheme for battery application as in Fig.

2.1. Should the object has a high impedance, a sinusoidal voltage signal (Potentiostatic)

is injected to get a corresponding current. Hence, the magnitude and the phase angle of

impedance are analyzed to estimate the parameter of the battery model. On the contrary, a

sinusoidal current signal (Galvanostatic) is injected into a small impedance object to observe

the corresponding voltage, and then the model-parameters are identified. Both methods have

high precision, but the signal injection could lead the battery cells to overload conditions

when the characteristics of the battery cells are unknown.

Besides, the sinusoidal injection method only obtain Nyquist plot of the battery. An

additional method should be utilized to determined the battery model. In some commercial

EIS equipment utilizing the genetic algorithm to obtain the battery model. The genetic

8



2.2 Conventional model identification

Change in phase

A sinusoidal injection

Response signal

Fig. 2.1 Sinusoidal injection method

algorithm applies the same technique in data mining – it iteratively performs the selection,

crossover, mutation, and encoding process to evolve the successive generation of models.

The components of genetic algorithms consist of:

Population incorporating individuals.

Encoding or decoding mechanism of individuals.

The objective function and an associated fitness evaluation criterion.

Selection procedure.

Genetic operators like recombination or crossover, mutation.

Probabilities to perform genetic operations.

Replacement technique.

Termination combination.

At every iteration, the algorithm delivers a model that inherits its traits from the previous

model and competes with the other models until the most predictive model survive.

In general, this method requires a long relaxation time for the battery before each

measurement to eliminate the polarization effect. Besides, the EIS identification time is

9



2.2 Conventional model identification
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Fig. 2.2 Genetic algorithm

high due to the frequency-swept scheme. By considering the disadvantages, sinusoidal signal

injection is unsuitable for the online state monitoring of BMS.
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2.3 Conventional SOH/SOC estimation

2.3 Conventional SOH/SOC estimation

According to [25] state of health (SOH) is a figure of merit of the present condition of a

battery cell (or a battery module, or a battery system), compared to its ideal conditions.

The unit of SOH is percent, and 100% means it is a fresh battery. Consider the capacity as

an example, SOH could be defined as the ratio of the current capacity and the rated capacity

given by the manufacture. Typically, the BMS will alert the user to change the batteries if

the battery capacity is 80% lower than the starting value. State of charge (SOC) means the

ratio of the remaining charge of the battery and the total charge while the battery is fully

charged at the same specific standard condition. And the SOC is often expressed in percent,

100% means fully charged and 0% means fully discharged.

Given that the state of charge level only can be estimated based on the battery voltage,

current, and temperature [10], the battery state estimation techniques are actively investigated

[11, 12]. For example, the Coulomb counting method estimates the SOC level of the cells by

counting the amount of charge that flows into or out of the cell. This method has become

the most preferred in industrial applications due to its simplicity [13, 14]. Additionally, data-

driven approaches such as artificial intelligence-based techniques are also gaining popularity.

ML and DL algorithms can accurately estimate the SOC level of the cells [15, 26, 27]. However,

the ML-based methods require a large dataset to train the model before operation on site, and

the DL-based methods demonstrate a large estimation error in the first few cycles showing a

risk in safety. Meanwhile, the required computation time is considerably long to gain practical

feasibility and meet the cost requirements. On the other hand, model-based methods can

estimate the SOC level with high accuracy and a low computation time [16, 28]. For example,

Kalman-filter-based battery state estimation is one of the most popular methods. However,

11



2.4 Switched capacitor equalizer

reports indicated that these methods are sensitive to the accuracy of the battery model

parameters. The influence of battery aging on the estimation accuracy is mostly neglected,

even though it is significant [17, 29]. To ensure the estimation accuracy, the battery model

parameters should be online monitored to reconfigure the state space model. In recent years,

many studies apply machine learning to optimize EKF algorithm. In [18, 19], the authors

utilize reinforcement learning to modify the parameters of EKF. Although this approach

could gain some impressive results because of self-learning ability based on real collected

data, it also has the limitations of data-driven methods, such as a variety of training data, a

long training time, and high computation burden.

2.4 Switched capacitor equalizer

According to the structure in Fig. 2.3, one bi-directional current sensor is adopted to measure

the equalization current [30]. The SOC rates of battery cells are estimated by utilizing the

measured current. Based on the SOC rate of cells, the donor or receiver cell is decided

to equalize the energy through a switch matrix and one capacitor. Thus, the charge is

transferred directly between any cells. The equalization capacitor, C, alternately connects

with each battery cell through the corresponding switches, SiH and SiL, in the matrix to

observe the process current flowing between the host and the guest cells during the scanning

time.

12
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S4H
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S2L
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Battery Management System

A

Fig. 2.3 Switched capacitor equalizer

2.5 Conclusion

The chapter mentions the overview of the issue. The definition and conventional method of

battery identification and SOH/SOC estimation are included, as drawbacks of each method.

And the switched capacitor equalizer is also introduced.
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Chapter 3

Proposed online battery model

identification

The proposed EIS-model parameters identification scheme is embedded into the existing

switched-capacitor equalizer as Fig. 3.1. By the virtue of switch-matrix structure, the

equalizing capacitor, C, can connect to any battery cell in the series string. When the

equalizing capacitor and the battery are connected, the charge transfer process occurs. To

ensure that the equalizing-capacitor is empty before each identification step, one resistor, one

switch, and one voltage sensing circuit are added to the existing equalizer circuit. Because

the proposed scheme utilizes the equalizing capacitor of the existing circuit, the value of

capacitance is dependent on the design of the equalizer circuit. The design of switches and

equalizing capacitor are provided in [30].

14
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3.1 Circuit structure

In general, the equalization process is executed intermittently, when the battery cells are in

idle mode. Accordingly, the EIS-model identification process is started before the equalization

step, when the battery cells reach steady-state status. The whole identification process

is described in Fig. 3.3. Before every identification step, the equalizing capacitor is fully

discharged to ensure the zero initial voltage. One identification process of one cell is divided

into two phases as Fig. 3.2(a). By controlling the switches, SiH and SiL, one battery

cell is connected to the equalizing capacitor. As a result, the charge transferring process

occurs from battery cell to the capacitor. By analyzing the capacitor voltage and current,

EIS-model parameters are identified. After the identification process is finished, the equalizing

capacitor is discharged by a dummy resistor, Rdummy, until the capacitor becomes completely

discharged. Next, the identification process for the next cell is executed as Fig. Fig. 3.2(b-c).

After all cells are scanned, the identification process is terminated. The obtained EIS-model

parameters are utilized to calibrate the coefficients of the SOC estimator or to estimate the

SOH status based on the impedance degradation. Since the EIS-model is identified after only

a single charge transfer cycle, energy loss during the identification process is trivial. Besides,

the impedance degradation requires a long time to occur. Thus, the EIS-model identification

process is only executed intermittently and the energy loss is very low.
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3.1 Circuit structure

Is C empty ? i > N?

Start

Turn off all switches;
i = 0;

Is C empty?

Identify cell #i
SiH & SiL are on;

Other switches are off

Discharge capacitor C
by Rdummy:
SR is on;

Other switches are off

i++;

Discharge capacitor C
by Rdummy:
SR is on;

Other switches are off

End

i: identification order

N: number of cells in the string

YesNo

Yes

No

Yes

No

Fig. 3.3 Control flowchart of the EIS-model identification for series-connected battery cells
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3.1 Circuit structure

RS

RP

CP

VTerminalVOC Vp
I

Fig. 3.4 An illustration of the Thévenin model

Although the accuracy of the conventional sinusoidal injection scheme is good, the

execution time of the frequency-sweep is usually long. The proposed scheme utilizes the

charge transfer process of the switched-capacitor converter to obtain the EIS-model of the

battery chemical time constant that has a large. Thus, the switched-capacitor equalizer is

operated below 1Hz frequency to observe the behavior of the battery impedance and reduce

the execution time.

Various EIS-models of battery [31] can be used for the modeling of the charge transfer

process. The high-order EIS-model can increase the accuracy of the state estimation, but the

calculation of the identification becomes more complex. Considering the trade-off between

the computation complexity and the estimation accuracy, the battery cell is modeled by

a Thévenin model with a single R-C network as in Fig. 3.4. The identification process is

divided into two phases as Fig. 3.5, where: (a) identification phase A based on the charge

transfer (t0 ∼ t1) and (b) capacitor discharge phase B (t2 ∼ t3).

During phase A (t0 ∼ t1), the switches SnH and SnL are turned on while SR is kept off.

By applying KCL and KVL to the model in s-domain as Fig. 3.5(a), the current flow in the

19



3.2 EIS algorithm
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I1(s)
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Fig. 3.5 Equivalent circuit in s-domain: (a) phase A (t0 ∼ t1); (b) phase B (t2 ∼ t3)

loop is calculated by

I1(s) = VOC −VC

s

1+sRpCp

Rn +Rp +sRpCp
, (3.1)

where Rn is the sum of Rs of battery model and Rloop (including on-resistance of the switches,

ESR of the capacitor, and resistance of sensor circuit).

By transforming the loop current into time domain, the charging current of capacitor is

expressed as

i1(t) = VOC −vC(t)
Rn +Rp

(1+ Rp

Rn
e

−(Rn+Rp)t

RnRpCp ), (3.2)

3.2 EIS algorithm

In phase A (t0 ∼ t1), the charge is transferred from the battery to the equalizing capacitor.

The operational principle of this phase is further analyzed as follows:

• Before each identification process, the open-circuit voltage (VOC) of the battery cell is

measured.
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3.2 EIS algorithm

• Based on the equivalent circuit in Fig. 3.5(a), the voltage difference and the flowing

current in the loop are calculated by Eq. 3.2 can be redefined by

∆V = VOC −vC(t), (3.3)

and

i1(t) = ∆V

Rn +Rp
(1+ Rp

Rn
e

−(Rn+Rp)t

RnRpCp ), (3.4)

3.2.1 Start and end time point strategy (S-ETPS)

The theoretical waveform in Fig. 3.6 reveal the impact of the model parameters on the

capacitor current, iC . Assuming that the polarization capacitor in battery model, Cp, is

completely discharged before the beginning of phase A (tM1), the battery impedance equals

Rs, resulting in the highest capacitor current amplitude. At some intermediate point tM2

when Cp is not fully charged yet, current flows in the loop are shared between Rp and Cp,

which makes the battery impedance increase. When Cp is almost fully charged at tM3, charge

flows mostly through Rp. By analyzing the current and voltage of equalizing capacitor, C,

the model-parameter can be identified as follows:

• At tM1 ∼= 0, the series resistance, Rs is calculated by

Rn = VOC −vc(tM1)
i1(tM1) , (3.5)

Rs = Rn −Rloop. (3.6)
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3.2 EIS algorithm

(a)
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ic

vc

tM1 tM2 tM3

Rs

Rp

Cp

M1

M2

M3

Fig. 3.6 Theoretical waveforms (a) current and voltage of the measuring capacitor; (b) start
and end point strategy

• At tM3 which is sufficiently large, the parallel resistance, Rp, is approximately expressed

as

Rp = VOC −vc(tM3)
i1(tM3) −Rn. (3.7)

• At tM2, if we denote K as

K =
(

i1(tM2)(Rn +Rp)
VOC −vc(tM2) −1

)
Rn

Rp
, (3.8)

the polarization capacitance, Cp, is calculated by

Cp = (Rn +Rp)tM2

RnRpln( 1
K )

. (3.9)
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3.2 EIS algorithm
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Fig. 3.7 Theoretical waveforms (a) current and voltage of the measuring capacitor; (b)
multiple time point strategy

3.2.2 Multiple time point strategy (MTPS)

The theoretical waveforms of this strategy is shown in Fig. 3.7

After reformulating Eq. 3.4 into

i1(t)
∆V

= 1
Rn +Rp

+ Rp

Rn(Rn +Rp)e
−(Rn+Rp)t

RnRpCp , (3.10)

and applying the exponential curve fitting to Eq. 3.10, the current (i1) and voltage (vC)

of the equalization capacitor at the various points (Fig. 3.7) are utilized to calculate the

parameters of the EIS model.
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3.2 EIS algorithm

For simplicity, the parameter of Eq. 3.10 are denoted as Eq. 3.11



y = i1(t)
∆V

x = t

a = Rp

Rn(Rn+Rp)

b = −(Rn+Rp)
RnRpCp

c = 1
Rn+Rp

(3.11)

Eq. 3.10 is reformulated into

y = aebt + c, (3.12)

By measuring the current (i1) and voltage (vC) of the equalization capacitor at multiple

time t, a set of points can be obtained [x1,y1]....[xn,yn], At this time, 3 parameters a,b, and

c can be calculated by following the below steps:

1. Calculate an approximation of b

2. Utilize b, an approximation of a is obtained

3. At this step, an approximation of c is determined

Firstly, approximation of b

Array dx holds the x differences between adjacent points dx1 = x2 −x1....dx3 = x4 −x3

Array dy holds the y differences dy1 = y2 −y1....dy3 = y4 −y3

Array cx holds the centers between points cx1 = x1+x2
2 ....cx3 = x3+x4

2

Array dq holds the differential quotients dq1 = dy1
dx1

....dq3 = dy3
dx3

To eliminate c, the differentiation of y = aebx + c is y′ = abebx

Calculating the same for all sample point, the differentiations can be obtained

y′
1 = abebx1
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3.2 EIS algorithm
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Fig. 3.8 Exponential curve fitting theory

y′
2 = abebx2

y′
3 = abebx3

Parameter a can be eliminated by division of subsequent y′:

y′
2

y′
1

= eb(x2−x1)

b =
ln(

y′
2

y′
1

)

x2−x1

with above arrays in mind:

b =
ln( dq2

dq1
)

cx2−cx1

b =
ln( dq3

dq2
)

cx3−cx2
...

The center values (cx) are used, because the tangent (differential quotient dq) is most

accurate between two x values. For subsequent points, the average value of b is calculated.

After calculate b, the approximation of a can be determined as follow
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3.3 Conclusion

y1 = aebx1 + c

y2 = aebx2 + c

......

c could be eliminated by subtraction of subsequent rows: dy1 = y2 −y1 = a(ebx2 −ebx1)

thus

a = dy1
ebx2 −ebx1

a = dy2
ebx3 −ebx2

An average value of a is calculated.

And finally, an approximation of c is calculated by c = y −aebx.

3.3 Conclusion

Thévenin model is adopted as a battery model in this work. By analyzing the integrated

circuit structure, the current equation of the capacitor equalizer is determined. This chapter

proposed S-ETPS and MTPS current sampling strategies to determine the battery parameter.

Observed that the EIS-model parameters are quickly obtained by one switching cycle. Thus,

the proposed method is suitable for the online diagnosis of individual battery cells. In phase B

(t2 ∼ t3), a dummy load, Rdummy, is used to ensure that the equalizing capacitor is completely

discharged before the next identification step in Fig. 3.5(b). The dummy resistance value

should be carefully designed by

Rdummy ≤ 1
5fsC

, (3.13)

where fs is the switching frequency in the test.
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Chapter 4

Proposed SOC/SOH estimation

method using online model

identification

4.1 Extended Kalman filter formula

According to estimating theory, the EKF is a nonlinear Kalman filter that has been improved

based on a linearization technology in real-time. In the battery state estimation, the processing

and system noise are approximated as white noise, which accords with Gaussian distribution

[32]. It linearizes noise expectation and covariance in the estimation process.

This algorithm utilizes the input and output data of the system to determine a linear state

equation to predict the present state of the system. Different from the classical algorithm,

which is suitable for a linear system, EKF can apply to the discrete nonlinear system by using

the Taylor series and Kalman filter algorithm. According to Eq. 4.1, the discrete nonlinear
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4.1 Extended Kalman filter formula

system’s expression and observation equations are provided.


xk+1 = f(xk,k)+wk

yk = h(xk,k)+uk

(4.1)

The state estimation is represented by the first part of Eq. (4.1) and the second part

represents the observed output vector. k represents a discrete-time point; xk+1 denote the

n-dimensional state vector. yk is the m-dimensional observation vector. wk and vk are

independent Gaussian white noise. To apply the Kalman filter, the first-order Taylor series

expansion of nonlinear functions f(·) and h(·) is carried out around the estimated value.

Consequently, the results are described as shown in Eq. 4.2.


f(xk,k) ≈ f(x̂k,k)+ ∂f(xk,k)

∂xk
|xk=x̂k

(xk − x̂k)

h(xk,k ≈ h(x̂k,k)+ ∂h(xk,k)
∂xk

|xk=x̂k
(xk − x̂k)

(4.2)

Where Jacobian matrices Ak,Bk,Ck, and Dk are expressed as Eq. 4.3.



Ak = ∂f(xk,k)
∂xk

|xk=x̂k
,

Ak = f(x̂k,k)−Akx̂k,

Ck = ∂h(xk,k)
∂xk

|xk=x̂k
,

Dk = h(x̂k,k)−Ckx̂k

(4.3)

Furthermore, Eq. 4.1 can be linearized as shown in Eq. 4.4.


xk+1 = Akxk +Bk +wk

yk = Ckxk +Dk +uk

(4.4)
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4.2 SOH estimation

The system is linearized Eq. 4.4 in real time around the estimated state for covariance

updates as the formulation Eq. 4.5.



x̂−
k+1 = f(x̂k),

P̂ −
k+1 = AkP̂kAT

k +Qk+1,

Kk+1 = P̂ −
k+1CT

k+1(Ck+1P̂ −
k+1CT

k+1 +Rk+1)−1

x̂k+1 = x−
k+1 +Kk+1[yk+1 −h(x−

k+1)],

P̂k+1 = [I −Kk+1Ck+1]P −
k+1

(4.5)

where k represents the number of iterations. P is the error covariance and K is the Kalman

gain. Q and R are the variances of w and v, respectively. The parameter I is the identity

matrix nxm. The initial state value is x(0) = E[x(0)], and its variance is P (0) = V ar[x(0)].

Besides, EKF-based battery state estimation is one of the most popular methods. However,

reports indicated that these methods are sensitive to the accuracy of the battery model

parameters. The influence of battery aging on the estimation accuracy is mostly neglected,

even though it is significant [17, 29].

4.2 SOH estimation

To further investigate the influence of aging on the EKF estimation accuracy, multiple tests

have been conducted to observe the battery characteristic at the various SOH levels. The

device under test is the 18650 Li-ion Samsung SDI (3.6V/2.9Ah) cells. The cells are fully

charged at 0.5C-rate current and are discharged by various C-rates (0.5C, 1.5C, and 2C)

at 25°C ambient temperature. The battery cells are gradually aged by repeating the tests.

After every 50 cycles, the battery impedance and OCV–SOC relationship of the cells are
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4.2 SOH estimation

observed to form the historical dataset of the cells at the various SOH levels. The changes in

the battery impedance and OCV–SOC mapping curve are illustrated in Fig. 4.1 and Fig. 4.2.

According to the results, the battery impedance drifted by 15% from the initial condition

after 550 cycles. Meanwhile, the OCV–SOC curve deviates from the initial curve. Both

factors significantly reduce the accuracy of the EKF estimation.

The same EKF estimator has been applied for the charging process of a cell at 100%

and 90% SOH levels. The estimation results are compared with the reference value from the

cycler in Fig. 4.3. The maximum error increased from 2.51% (at 100% SOH) to 15.49% (at

90% SOH). Evidently, the aging of the cell increases the error of the EKF estimator. On

the other hand, the aging pattern of the cells is different from each other even under the

same driving condition [33]. Consequently, the assessment of the whole pack by a single EKF

estimation becomes inappropriate. Therefore, online cell-by-cell state estimation is essential.

In addition, based on the historical data set of battery, the relationship between SOH

level and Rt is illustrated in Fig. 4.4. The SOH level is a function of Rt, which can be derived

by applying the polynomial curve fitting technique. Therefore, the SOH level is estimated

directly from the measured Rt. In this work, the relation is obtained as:

SOH = 0.05347×R2
t −7.138×Rt +339.8. (4.6)

where the total resistance of the cell (Rt) is calculated by

∆Rt = Rs +Rp, (4.7)
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Fig. 4.1 Battery impedance change during aging

This relation is used for constructing the aging dataset look-up table, where the corre-

sponding actual capacity (Cn) and SOC–OCV relationship are calculated based on the SOH

level. Finally, the updated Cn and SOC–OCV relationship are simultaneously utilized for

the EKF estimator to estimate the SOC level.
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4.2 SOH estimation
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Fig. 4.3 SOC estimation without model calibration at 100% and 90% SOH

After the model parameters for one cell are obtained, the switch-matrix is controlled to

dock other cells to the flying capacitor for another parameter extraction step. Because the
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4.3 SOC estimation
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SOH slowly decreases by nature, this process can be conducted in the idle mode of the cells;

right before every charging process or during any usual battery maintenance routine. The

extra computation time or energy loss is trivial because the whole reconfiguration process is

considerably fast and seldom occurs.

4.3 SOC estimation

The battery cell is modeled by a Thevénin equivalent circuit, as shown in Fig. 3.4. Although

the second order model can achieve higher accuracy, its computation becomes complex.

Accordingly, the first order model is chosen for the state estimation for individual cells.

The model consists of an open circuit voltage (VOC) and an R-RC (Rs,Rp,Cp) equivalent

impedance circuit. VOC is determined by LUT after updated SOC-OCV curve based on SOH

levels, while the impedance is updated by the online identification as in Chapter 3. Besides,
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4.3 SOC estimation

the battery SOC can not be measured directly, instead, it should be computed by the ratio

of the remaining capacity to the total capacity as

SOC(k +1) = SOC(k)− η∆ti(k)
Cn

(4.8)

Meanwhile, the terminal voltage of the cell is calculated by the first part of Eq. 4.9, and the

second part is the polarization voltage


VT erminal = VOC(k)−VP (k)− I(k)Rs

VP (k +1) = e
−∆t

RpCP VP (k)+RP (1−e
−∆t

RpCP )I(k)
(4.9)

where VOC(k) is the open-circuit voltage at the kth sampling time and is a function of SOC,

Vp(k) is the polarization voltage at the kth sampling time applied to the parallel RC network,

η is the efficiency of charge/discharge process, I(k) denotes the measured current of the cell,

Cn is the nominal full capacity of the cell, and ∆t is the sample time. For a convention,

the polarity of the charging and discharging current are regarded as positive and negative,

respectively.

In the battery system, the state and measurement equations can be built in as follows:


xk+1 = Akxk +Bkuk

yk = Ckxk +Dkuk

(4.10)

where xk+1 is the state vector at time k + 1, the state variables are x = [SOC,Vp], system

input is uk = I(k), and system output is yk = VT erminal. The Ak,Bk,Ck, and Dk matrices

are given by Eq. 4.11 to Eq. 4.14 using Eq. 4.8 and Eq. 4.9:
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4.4 Conclusion

Ak =

1 0

0 e
−∆t

RpCP

 (4.11)

Bk =


η∆ti(k)

Cn

RP (1−e
−∆t

RpCP )

 (4.12)

Ck =
[

∂VOC
∂SOC −1

]
(4.13)

Dk = −Rs. (4.14)

4.4 Conclusion

After the model parameters of the cell are identified, the EIS model is utilized to update the

state space model for SOC estimation. Next, the correlation between SOH level and Rt is

illustrated based on the historical dataset. The SOH level is a function of Rt, which can

be derived by applying the polynomial curve fitting technique. Besides, the EKF for SOC

estimation is also defined.
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Chapter 5

Experimental verification

First, the reference set should be constructed. The reference SOC and SOH levels of the cells

are calculated based on the actual capacity of the cells, which are provided by the Coulomb

counting method with a high accuracy sensing equipment Maccor 4300K. The cell model

parameters are extracted by using the sinusoidal injection method with a genetic estimation

algorithm to create a reference set of data for the EIS model. This method is supplied by the

commercial offline EIS measurement equipment (ZIVE SP10).

The accuracy of the model parameters is evaluated with an FPGA-based real-time

hardware-in-the-loop test platform (Typhoon HIL 602+). Based on the reference parameters

from the EIS test rests, the circuit model is constructed into a real-time platform to isolate

the effects of unintended disturbances, such as temperature changes during the operation

and manufacturing tolerances in battery characteristics. Then, the proposed method is

implemented in the real-time platform, and the algorithm is executed for a 3S1P battery

string consisting of three cells in series.
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5.1 Battery data set

5.1 Battery data set

In order to collect battery data set, the test system has 3 main parts as in Fig. 5.1:

• Chamber is used for making the ambient temperature for the test.

• EIS analyzer (Zive SP10) is used to measure impedance the battery, which is placed in

chamber 1.

• Cycler equipment (Maccor 4300K) is used for cycling the batteries at 0.5C, 1.5C 2C,

which is kept in chamber 2.

The test is conducted at 25oC ambient temperature. 3 sample batteries are charged and

discharged until SOH is smaller than 80%, and the impedance is measured every 50 cycles.

The device under test is the 18650 Li-ion Samsung SDI (3.6V/2.9Ah) cells. The specifica-

tions is shown in Table. 5.1

The experimental process is conducted according to the flowchart in Fig. 5.2

Step 1: The temperature of the chamber is set to the target temperature 25oC.

Step 2: The batteries are fully charged by using the CC-CV method at the current rate

0.5C (1375mA).

Step 3: At the i-th cycle so that i%50 == 0 (for example: i = 50, 100, 150, ...):

• Step 3.1: Set discharge rate for 4 cells is respectively set 0.5C (1375mA), 1.5C (4125mA),

2C (5500mA).

• Step 3.2: Discharge each battery in constant time t to decrease target SOC (100, 95, . . . ,

0), where t(s) determined by the equation:

SOC = SOC(0)−
∫ t

0 I (t)dt

3600×C
(5.1)
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Table 5.1 Battery Samsung INR18650-29E specifications

Item Specification

Typical Capacity 2,850mAh (0.2C, 2.50V discharge)

Minimum Capacity 2,750mAh (0.2C, 2.50V discharge)

Charging Voltage 4.2V

Nominal Voltage 3.65V (0.2C discharge)

Charging Method CC-CV (constant voltage with limited current)

Charging Current Standard charge: 1,375mA

Charging Time Standard charge: 3hours

Max. Charge Current 2,750mA (not for cycle life)

Max. Discharge Current
5,500mAh (continuous discharge)

8,250mAh (not for continuous discharge)

Discharge Cut-off Voltage 2.5V

Cell Weight 48g max

Operating Temperature (Cell Surface Temperature)
Charge : 0 to 45°C

Discharge : -20 to 60°C

Corresponding to each desire SOC, let the batteries rest for 30 minutes to reach an equilibrium

state. Next, measure the impedance of the battery (10kHz-0.1Hz). And repeat step 3.2 until

reach cut-off voltage.

Step 4: At the i-th cycle so that i%50 ̸= 0 (for example: i ≠ 50,100,150, ...), discharge rate

for 3 cells is respectively set 0.5C, 1.5C, 2C. Charge/discharge in 50 cycles and logging the I,

V, T, Q.

Step 5: If SOH < 80%, go to Step 3. Otherwise, the test is finished.
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Cylindrical battery

EIS analyzer

Cycler

(a)

(b)

Chamber

Fig. 5.1 Battery data set test set up
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5.2 Validation of EIS identification

To verify the identification scheme, real-time simulations for a 3S1P 18650 Li-ion (3.6V/2.9Ah)

battery string are implemented. First of all, the actual impedance of the cells is analyzed

by a sinusoidal EIS equipment (Zive SP10) as a reference. Next, based on the obtained

model-parameter, R-C battery model is reconstructed on a real-time simulator (Typhoon

HIL602+) to exclude the effect of external factors on the battery characteristics such as

temperature, pressure, etc. The setups of the other parameters are as follows: the nominal

voltage of the cell is 3.6V ; the equalizing capacitance is 470µF as it is already designed

for the cell balancing circuit in [30] and Rdummy is designed as 20mΩ by Eq (3.13); total

resistance of the loop Rn is set to 100Ω; switching frequency of the measurement circuit

is set to 1Hz. To eliminate the measurement noise, the model-parameters are captured 5

times and the average result is used to compare the results with the measurement from the

sinusoidal EIS equipment.

The waveforms of the capacitor current and voltage are shown in Fig. 5.3, all of which

are similar to the theoretical analysis in Chapter 3. The model-parameter of the battery

cells are estimated and summarized in Table 5.2 for S-ETPS and Table 5.3 for MTPS. The

errors of the S-ETPS are within 4% for all model-parameters. For the MTPS, the estimation

error is good more accurate for Rs and Rp. Although, the error becomes up to 8% for Cp,

it is found that the MTPS can partially improve the model accuracy, but the number of

time-point should be optimized for all three parameters. The test results indicate that the

MTPS has more advantages than S-ETPS in terms of practical implementation. While the

S-ETPS is sensitive to the characteristics mismatching of the cells, the MTPS can estimate

the model parameters just by some arbitrary estimation point.
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Fig. 5.2 Flow chart of the processing test
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5.3 Validation of SOH/SOC estimation

To assess the frequency response of the equivalent circuit using estimated model-parameters,

the Cole-Cole plot of the conventional multi-frequency sinusoidal sweep test, reference model

generated by conventional single frequency sinusoidal test, and model constructed by the

proposed online method are illustrated in Fig. 5.4. The curves show that the difference

between the reference model and the estimation is trivial. Thus, it is demonstrated that

the proposed scheme can re-enact the EIS-model just by one equalization cycle at a single

operating frequency.

Because the frequency-sweep is excluded, the execution time is significantly reduced.

The proposed scheme only requires about a few seconds to identify the EIS-model of one

battery, while the commercial equipment takes more than 2 minutes. On the other hand, the

computation complexity is low enough that it can be handled by a low-cost MCU. It means

that the proposed scheme has a high potential to be applied for multiple cell applications.

5.3 Validation of SOH/SOC estimation

After constructing the reference set, the reference SOC and SOH levels of the cells are

calculated based on the actual capacity of the cells, which are provided by the Coulomb

counting method. Based on the EIS test result is Section 5.2, the circuit model is constructed

into a real-time platform to isolate the effects of unintended disturbances, such as temperature

changes during the operation and manufacturing tolerances in battery characteristics. Then,

the proposed method is implemented in the real-time platform, and the MPTS is executed

for a 3S1P battery string consisting of three cells in series. The estimated parameter are

summarized in Table. 5.4.
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5.3 Validation of SOH/SOC estimation

According to the comparison of the extracted parameters with the reference value from

the commercial EIS equipment, the maximum errors in the estimation are 0.12% for Rs,

3.18% for Rp, 0.7% for Rt, and 3.54% for Cp, respectively. Thus, the EKF parameters, such

as Rs, Rp, and Cp, can be successively reconfigured.

Meanwhile, the actual SOH level is predicted by the proposed algorithm based on the

estimated impedance of the cells and the data set. The predicted values are summarized in

Table. 5.5, where the proposed method can predict the SOH level within 1.2% error, showing

that the proposed method efficiently performs in predicting the SOH condition of the cells.

In this case, the remaining EKF parameters, such as OCV–SOC relation and Cn, can be

obtained.

Thenceforth, EKF parameters reflect the aging effects, and the SOC estimation accuracy

is greatly improved. To closely investigate the performance, the EKF estimation with or

without the state space parameters reconfiguration is tested for a 0.5C-rate charging and

1.5C-rate discharging process at the 100th (97.75% SOH), 400th (92.36% SOH), 550th cycle

(91.3% SOH). The SOC estimation error is assessed by root-mean-square-error (RMSE),

which is calculated by

RMSE =

√√√√ N∑
i=1

(SOCref − SOCestimated)2

N
(5.2)

where SOCref and SOCestimated are the reference SOC and the estimated SOC, respec-

tively; and N is the number of data. The terminal voltage and SOC profile of the battery

cell are illustrated in Fig. 5.5, Fig. 5.6, Fig. 5.7. The EKF estimation without the aging

consideration has a high RMSE in SOC estimation and RMSE inscrease during battery aging

(the lowest RMSE at 250th cycle and the highest RMSE at 900th cycle). By contrast, the
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5.4 Conclusion

estimation error is reduced below 1.63% RMSE because the model parameter is extracted on-

line and cell-by-cell. Therefore, the state space parameter reconfiguration process is effective

in improving the accuracy of the SOC estimation for individual cells.

5.4 Conclusion

The experiment was conducted to collect data set at 25oC ambient temperature. The

parameter identification results based on hardware in the loop are compared. The results

indicate that MTPS has more advantages in practical implementation. The results of the

SOC/SOH estimation demonstrate the efficiency of the state space parameter reconfiguration

process in increasing the precision of the SOC estimation for individual cells within 1.63%

RMSE.

48



5.4 Conclusion

Ta
bl

e
5.

4
M

od
el

-p
ar

am
et

er
Id

en
tifi

ca
tio

n
R

es
ul

ts
fo

r
3

ce
lls

C
el

l
#

1
C

el
l

#
2

C
el

l
#

3

R
s
(m

Ω
)

R
p
(m

Ω
)

R
t(

m
Ω

)
C

p
(F

)
R

s
(m

Ω
)

R
p
(m

Ω
)

R
t(

m
Ω

)
C

p
(F

)
R

s
(m

Ω
)

R
p
(m

Ω
)

R
t(

m
Ω

)
C

p
(F

)

E
st

im
at

ed

va
lu

e

Sa
m

pl
e

#
1

49
.1

13
5.

63
6

55
.2

14
1.

03
2

51
.6

89
10

.1
12

61
.8

38
2.

13
2

49
.9

09
11

.4
16

61
.9

07
2.

87
5

Sa
m

pl
e

#
2

50
.0

51
5.

70
0

54
.9

63
1.

01
2

49
.9

39
10

.0
42

61
.9

28
2.

15
0

50
.9

58
11

.4
45

62
.7

58
2.

92
0

Sa
m

pl
e

#
3

48
.7

51
5.

59
4

54
.0

56
1.

04
2

50
.1

31
9.

86
7

60
.7

83
2.

10
2

50
.9

78
11

.5
48

63
.1

58
2.

88
1

Sa
m

pl
e

#
4

49
.2

29
5.

67
7

54
.3

79
1.

03
7

51
.4

51
9.

97
3

61
.2

48
2.

14
6

49
.8

64
11

.7
84

63
.1

49
2.

89
2

Sa
m

pl
e

#
5

49
.8

47
5.

71
2

54
.6

99
1.

02
5

50
.8

47
9.

85
4

59
.7

25
2.

13
4

50
.6

61
11

.3
99

62
.3

19
2.

86
7

A
ve

ra
ge

49
.4

00
5.

70
0

55
.1

00
1.

02
8

50
.7

34
10

.0
32

60
.7

66
2.

13
2

50
.5

45
11

.5
70

62
.1

15
2.

86
8

A
ct

ua
l

va
lu

e
49

.4
32

5.
69

0
55

.1
21

1.
00

9
50

.7
54

9.
89

9
60

.6
53

2.
21

0
50

.6
06

11
.9

50
62

.5
56

2.
89

7

E
rr

or
(%

)
-0

.0
64

2
0.

18
10

-0
.0

38
9

1.
87

35
-0

.0
38

9
1.

34
15

0.
18

64
-3

.5
44

6
-0

.1
20

6
-3

.1
79

3
-0

.7
04

9
-1

.0
20

9

49



5.4 Conclusion

Table 5.5 SOH estimation result by proposed method

Rt−reference(mΩ) Rt−estimated(mΩ) SOHref (%) SOHestimated(%) SOHerror(%)

Cell #1 55.12144 55.1 97.74741 98.9137 1.1931

Cell #2 60.65297 60.766 92.35813 92.5527 0.2107

Cell #3 62.55597 62.115 91.32608 91.5443 0.2389
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Fig. 5.5 SOC estimation result at 97.75% SOH
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Fig. 5.6 SOC estimation result at 92.36% SOH
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Fig. 5.7 SOC estimation result at 91.3% SOH
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Chapter 6

Conclusion and future work

6.1 Conclusion

As stated in chapter Introduction, the battery state of individual cells should be monitored

by considering the aging characteristics of the individual cell rather than a whole battery

module or pack. Since individual cells are operating in different cooling profiles and the

aging patterns of the cells are dissimilar from each other, estimation results for the whole

battery module or pack mostly fail to represent the state of individual cells. This kind of

problem becomes more severe in the second-life battery system. At this time, individual cell

characteristics are not as uniform as the new one. For that reason, the mismatch in the battery

characteristics can make the series string suffer from over-charging and over-discharging.

A calibration method for SOC estimation using EKF was presented in this thesis. In the

proposed method, the online cell-by-cell parameter extraction technique for the individual cell

is proposed along with a switch matrix flying capacitor structure by considering the battery

aging. The The SOC and SOH levels are obtained by tracking the actual model parameters

of the individual cells. The verification result proves that the EKF estimation combined
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with the proposed state space parameter reconfiguration process can effectively improve the

estimation accuracy. Furthermore, the proposed circuit structure is simple enough to be

integrated into conventional active cell balancing circuits.

6.2 Future work

The field of BMS is not the only trend these days but also involved in many disciplines. The

work presented in this thesis is but a small part of the required effort. The following is a

summary of some recommendations for additional study.

• In this work, the model accuracy of the MTPS is depedent on the sampling times. To

improve the model accuracy, the number of time-point should be considered and optimized.

• Besides, the proposed method depends on the capacitor equalizer structure. Developing

a general algorithm to identify the parameters of the battery is necessary. This algorithm

could be applied to any equalizer structure to determine the battery model for an individual

cell.

• In addition, this thesis did not consider the thermal model of the battery. In the future,

the combination of aging and thermal model is necessary because the battery is always

operated at different ambient temperatures. This issue also causes the mismatching of battery

characteristics.
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