
Abstract—Photovoltaic model (PVM) presents an easy and 
reliable way to evaluate both the static and dynamic 
behaviors of photovoltaic systems. Due to the implicitness of 
the basic I-V characteristic equations, a high number of 
unknown parameters, and the mathematical complexities of 
these conventional models, the effective performance analysis 
of these systems is still cumbersome. In this paper, a novel 
empirical model based on unique similarities between the 
geometric shapes of a superellipse and the graphical 
characteristics of the I-V curve is presented. As such, a step-
by-step procedure describing the full-range approximation of 
the PV characteristic curves and parameter extraction 
process is illustrated. Regardless of the PV panel cell type, 
simulation results show that the proposed model maintains 
the 1% absolute error within the vicinity of the maximum 
power point. 
 

Index Terms—Photovoltaic, Solar cell model, I-V curve. 

I.  INTRODUCTION 
In recent times, solar energy has emerged as one of the 

cleanest and most reliable means of meeting ever-
increasing energy demands [1-4]. However, harnessing 
this abundant energy by using photovoltaic (PV) systems 
can be quite difficult due to varying ambient conditions, 
location, and altitude of the PV panels [5-6]. To achieve 
the real-time modeling, simulation, and performance 
analysis of these systems, equivalent photovoltaic models 
(PVM) have been proposed in the literature. 

By taking advantage of the conversion behavior 
describing a typical PV panel, equivalent circuit-based 
models and their corresponding derivatives have been 
successfully implemented in most power electronics 
software environments including MATLAB/Simulink, 
PSIM, PLCS, etc [7]. These models can be easily classified 
based on their number of diode components and 
subsequent fitting parameters [8].  

Owing to its simplicity and fewer unknown parameters, 
most researchers and technicians in the industry 
effectively and efficiently utilize the single-diode model. 
However, the implicitness and nonlinearity of its basic 
equation make the accurate and rapid reconstruction of PV 
characteristic curves very tedious.  

To address this challenge, numerous approximate PVM 
equations have been proposed in literature as reliable 
alternatives [7]. These PVM equations transform the basic 
I-V characteristic equation into simple explicit model 
equations by either decoupling or parameterizing its 
exponential term. Based on their mathematical formulas, 

approximate PVM equations can be classified as either 
analytical-based or iteration-based methods [9]. 

Since the solutions of the iteration-based PVM 
equations are heavily dependent on their initial guess 
values and the specified tolerance, the accuracy of the 
reconstructed curves within the vicinity of MPP is usually 
low [10-12]. As such, approximate PVM equations remain 
the best option in achieving the exact or near-exact replicas 
of the PV characteristic curves as specified in the 
manufacturer’s datasheet [9]. 

The Lambert-Ω function is one of the most widely 
utilized methods for the decoupling of the exponential 
term in the basic I-V characteristic equation [13]. However, 
due to the mathematical complexity of the basic Lambert 
(Haley’s) method [14-15], achieving high model accuracy, 
especially within the vicinity of MPP can be quite 
cumbersome. Several improvements in the form of series 
expansion formulas have been proposed for the 
simplification of the PVM equation [14-24]. 

Other analytical-based PVM equations according to 
literature include Taylor’s series expansion [25] Padé 
approximant [26,27], Symbolic function [28], Chebyshev 
polynomials [29], Two-port network expansion [30], and 
two-parameter model [31]. Regardless, of the 
mathematical complexity of these PVM equations, the 
required number of unknown parameters (which are 
usually not readily available in the manufacturer’s 
datasheet) are all still a hindrance to the full understanding 
of the behavior of PV panels. Thus, this paper proposes a 
novel empirical model based on the unique similarities 
between the graphical characteristics of the I-V curve and 
the geometric shape of a double-shaped superellipse.  

The structure of the paper is as follows. In Section II, 
the conventional single-diode model and its resulting 
characteristic equation are extensively discussed. 
Afterward, the theoretical background and generalized 
explicit simultaneous equations describing the new 
proposed empirical model for PV panels are established. 
In Section III, the model accuracy and parameter 
convergence of the superellipse model is evaluated by the 
IEC EN 50530 standard. Finally, the conclusion and future 
works drawn from these results are given in Section IV. 

II.  CONVENTIONAL SINGLE-DIODE MODEL FOR 
PHOTOVOLTAIC PANELS 

As shown in Fig. 1, the single-diode model consists of 
one diode component and five fitting parameters. By 
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applying circuit analysis, the characteristic equation 
describing the typical I-V curve as shown in Fig. 2 can 
therefore be expressed as 

𝑖𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑠 [𝑒
𝑣𝑝𝑣+𝑖𝑝𝑣𝑅𝑠

𝑅𝑠ℎ − 1] −
𝑣𝑝𝑣 + 𝑖𝑝𝑣𝑅𝑠

𝑅𝑠ℎ

 
(1) 

where 𝑖𝑝𝑣  is the PV output current (A), 𝑣𝑝𝑣  is the PV 
output voltage (V), 𝐼𝑝ℎ is the photovoltaic current (A), 𝐼𝑠 
is the saturation current of the diode (A), 𝑉𝑡  is the thermal 
voltage (V), 𝐴 is the ideality factor, while 𝑅𝑠, 𝑅𝑠ℎ  and 
𝑁 is the series resistance (Ω), parallel resistance (Ω), and 
the number of cells in a series string inside the panel 
respectively. 
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Fig. 1. Equivalent electrical circuit of the single-diode model for PV 

panels. 

 
Fig. 2. A plot of the key points describing the typical PV characteristic 

curves. 
 

Irrespective of ambient conditions, the typical PV 
characteristic curves as shown in Fig. 2 consists of four 
key points – voltage at the maximum power point 𝑉𝑚𝑝 , 
current at the maximum power point 𝐼𝑚𝑝 ,  open-circuit 
voltage 𝑉𝑜𝑐 , and short-circuit current 𝐼𝑠𝑐 .  

III.  SUPERELLIPSE MODEL FOR PHOTOVOLTAIC PANELS 

A.  Proposed Model 
Superellipse are geometrical shaped curves that 

constantly retains their 𝑥  and 𝑦  intercepts irrespective 
of distortion in their overall shapes as shown in Fig. 3. In 
its Cartesian coordinates, the implicit equation describing 
any point 𝑃(𝑥, 𝑦)  along these curve can therefore be 

easily expressed as 

(
𝑥

𝐴
)

𝑚

+ (
𝑦

𝐵
)

𝑛

= 1 (2) 

where 𝐴  is the positive 𝑥 − intercepts value, 𝐵  is the 
positive 𝑦 −  intercepts value, while 𝑚  and 𝑛  are its 
optimum fitting parameters. 

 
Fig. 3. A plot of a double-shaped superellipse with varying parameter 

values. 
By taking 𝐴 and 𝐵 as the 𝑉𝑜𝑐  and 𝐼𝑠𝑐  of a typical I-

V curve respectively, a novel implicit equation for PV 
panels is defined as 

(
𝑣

𝑉𝑜𝑐

)
𝑚

+ (
𝑖

𝐼𝑠𝑐

)
𝑛

= 1 
(3) 

where 𝑖 is the output current and 𝑣 is the output voltage 
of the superellipse model respectively. 

If we make 𝑖  the subject of the formula, an explicit 
equation describing the full-range regeneration of the I-V 
curve under STC can therefore be written as 

𝑖 = 𝐼𝑠𝑐 [1 − (
𝑣

𝑉𝑜𝑐

)
𝑚

]

1
𝑛

. 
(4) 

 

B.  Parameter Extraction 
Due to the unique similarities between the conventional 

singe-diode and superellipse models, we can therefore 
assume both models exhibit similar mathematical 
properties and constraints as established by the 
manufacturer’s PV characteristic curves. Hence, to ensure 
optimum parameter extraction and model accuracy within 
the vicinity of MPP, the following datasheet constraints 
are applied (4). 

 Constraint 1: I-V curve enumeration starts from 
(𝑉𝑜𝑐 , 0) and ends at (0, 𝐼𝑠𝑐). As such, the fixed 
points of the superellipse model; at both its semi-
major and semi-minor axes are the 𝑉𝑜𝑐  and 𝐼𝑠𝑐  
points respectively. 

 Constraint 2: The I-V curve must always pass 
through its MPP. By substituting the MPP values 
at STC from any manufacturer’s datasheet into 
(4),  an explicit equation describing the exact 
MPP of the superellipse model can therefore be 
expressed as 

𝐼𝑚𝑝 = 𝐼𝑠𝑐 [1 − (
𝑉𝑚𝑝

𝑉𝑜𝑐

)
𝑚

]

1
𝑛

 
(5) 
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 Constraint 3: At MPP, the slope of the P-V curve 
is null. To meet this constraint, if we differentiate 
(4) such that 

𝑑𝑝

𝑑𝑣
|

𝑣=𝑉𝑚𝑝

= 𝑖 + 𝑣 (
𝑑𝑖

𝑑𝑣
)|

𝑖=𝐼𝑚𝑝,𝑣=𝑉𝑚𝑝

 
(6) 

 we obtain 

𝐼𝑚𝑝 =
𝑚𝐼𝑠𝑐

𝑛
(

𝑉𝑚𝑝

𝑉𝑜𝑐

)
𝑚

(
𝐼𝑚𝑝

𝐼𝑠𝑐

)
1−𝑛

 
(7) 

Therefore, by combining the mathematical equations 
from Constraints 2 and 3, a simultaneous equation 
describing the nonlinear superellipse model can be 
expressed as 

𝐼𝑚𝑝 = 𝐼𝑠𝑐 [1 − (
𝑉𝑚𝑝

𝑉𝑜𝑐

)
𝑚

]

1
𝑛

 
(8) 

and 

𝐼𝑚𝑝 =
𝑚𝐼𝑠𝑐

𝑛
(

𝑉𝑚𝑝

𝑉𝑜𝑐

)
𝑚

(
𝐼𝑚𝑝

𝐼𝑠𝑐

)
1−𝑛

 
(9) 

Thus, (8) and (9) formulates the sets of necessary 
and sufficient conditions that must always be obeyed in 
extracting the fitting parameters of the superellipse model.  

C.  Optimization Algorithms 
Several methods have been proposed in literature for 

obtaining the solutions to multidimensional equations 
[32]. Based on conventional polynomial expression, (8) 
and (9) can also be considered as 

𝑝(𝑚, 𝑛) = 𝐼𝑚𝑝 − 𝐼𝑠𝑐 [1 − (
𝑉𝑚𝑝

𝑉𝑜𝑐

)
𝑚

]

1
𝑛

 
(10) 

and 

𝑝(𝑚, 𝑛) = 𝐼𝑚𝑝 −
𝑚𝐼𝑠𝑐

𝑛
(

𝑉𝑚𝑝

𝑉𝑜𝑐

)
𝑚

(
𝐼𝑚𝑝

𝐼𝑠𝑐

)
1−𝑛

 
(11) 

Accordingly, in this paper, two distinct approaches are 
considered in extracting fitting parameters of the 
superellipse model. 

 Approach 1: By considering (10)  and (11)   
as composite functions 𝑝  and 𝑞  respectively 
with two independent variables, the optimum 
fitting parameters can be obtained using the 
Newton-Raphson method such that 

[
𝑚𝑘

𝑛𝑘
]

= [
𝑚𝑘−1

𝑛𝑘−1
] − [

𝜕𝑝

𝜕𝑚

𝜕𝑝

𝜕𝑛
𝜕𝑝

𝜕𝑚

𝜕𝑝

𝜕𝑛

]|

(𝑚𝑘−1,𝑛𝑘−1)

−1

[
𝑝(𝑚𝑘−1, 𝑛𝑘−1)

𝑞(𝑚𝑘−1, 𝑛𝑘−1)
] 

(12) 

where 1, 2,3...k  is the iteration counts.  
 Approach 2: According to algebra rules, (10) 

and (11) can also be equivalently rewritten as 
(𝑝(𝑚, 𝑛))

2
+ (𝑞(𝑚, 𝑛))

2
= 0 (13) 

Therefore, by applying optimization algorithms 
to (12), the superellipse fitting parameters can 
also be extracted. In this paper, the Powell and 
the Levenberg-Marquardt methods [33] are 
therefore utilized to minimize the objective 

function given by 
𝑓(𝑚, 𝑛) = (𝑝(𝑚, 𝑛))

2
+ (𝑞(𝑚, 𝑛))

2
 (14) 

 so that 

𝑓(𝑚, 𝑛) = (𝑝𝐼𝑚𝑝 − 𝐼𝑠𝑐 [1 − (
𝑉𝑚𝑝

𝑉𝑜𝑐

)
𝑚

]

1
𝑛

)

2

+ (𝐼𝑚𝑝

−
𝑚𝐼𝑠𝑐

𝑛
(

𝑉𝑚𝑝

𝑉𝑜𝑐

)
𝑚

(
𝐼𝑚𝑝

𝐼𝑠𝑐

)
1−𝑛

)

2

 

(15) 

IV.  PARAMETER CONVERGENCE AND MODEL ACCURACY 

A.  Criteria for Evaluating Accuracy 
The IEC EN50530 standard maintains the notion that 

the absolute current and power errors within the vicinity of 
±10% of the PV panels 𝑉𝑚𝑝 should always be less than 
or equal to 1% . In this paper, the proposed empirical 
model is evaluated by this standard using two different PV 
panels – KC200GT and VBHN330SA16. 

The mathematical expression used in computing these 
absolute errors is expressed as 

𝜀𝐼(%) =
1

0.2𝑉𝑚𝑝

∫ |
𝑖𝑒(𝑣) − 𝑖𝑟(𝑣)

𝑖𝑟(𝑣)
| 𝑑𝑣

𝑉𝑚𝑝=±10%

× 100 

𝜀𝑃(%) =
1

0.2𝑉𝑚𝑝

∫ |
𝑝𝑒(𝑣) − 𝑝𝑟(𝑣)

𝑝𝑟(𝑣)
| 𝑑𝑣

𝑉𝑚𝑝=±10%

× 100 

(15) 

where the subscript 𝑒 represents the expected values of 
the approximate curves and 𝑟 denotes the data values for 
the reference model. Using the manufacturer’s datasheet 
data as reference, the evaluation of the PV characteristic 
curves is carried out using MATLAB/Simulink in an 11th 
Gen Intel(R) Core(TM) i9-11900K CPU. 

B.  Parameter Convergence 
Since equations (10)  and (11)  are inherently 

nonlinear, parameter convergence and numerical stability 
issues would arise if the initial values for the optimization 
algorithms are not well-defined.  As established in 
Section II, the superellipse model curves have been 
proposed as an easy-to-fit replica of the graphical 
characteristics of the datasheet curves. Hence, by taking 
advantage of the voltage and current ratios of the typical I-
V curve at STC, a mathematical expression for 
determining the initialization or starting values (𝑚0, 𝑛0)    
 0 0,m n can therefore be expressed as 

𝑚0 =
𝑉𝑚𝑝

𝑉𝑜𝑐

 

𝑛0 =
𝐼𝑚𝑝

𝐼𝑠𝑐

 

(15) 

In addition, to prevent non-converging infinite 
iterations of the optimization algorithms in Section II. C, 
termination conditions are introduced such that 
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𝑚𝑘 − 𝑚𝑘−1 ≤ 1 × 10−6 
𝑛𝑘 − 𝑛𝑘−1 ≤ 1 × 10−6 

(16) 

with 𝜀1 ≈ 𝜀2 ≈ 1 × 10−6 in this paper. 

C.  Accuracy Evaluation under STC 
By substituting the required PV panel specification in 

Table I into (10) , (11)  and (15)  respectively, the 
fitting parameters of the superellipse model are easily 
extracted. According to the method employed in 
determining the search direction of the optimization 
algorithms, while Powell’s method is considered a zero 
gradient technique, Newton-Raphson and Levenberg-
Marquardt methods are considered second-order 
numerical techniques. 

Although all three optimization algorithms require 
information (or history) from previous iteration loops, the 
parameter values are extracted at different iteration counts 
as shown in Table II. While Powell’s and Newton-
Raphson's methods have almost the same iteration count, 
the iteration count is doubled when utilizing the 
Levenberg-Marquardt method irrespective of PV cell type.  

TABLE I 
PV PANEL SPECIFICATIONS USED IN THIS PAPER 

TABLE II 
OPTIMUM FITTING PARAMETERS FOR THE SUPERELLIPSE MODEL USING 

DIFFERENT ALGORITHMS. 

PV Panel Optimization Algorithm m  n  Iteration 
count 

KC200GT 
Newton-Raphson 12.7941 0.7734  10  

Powell 12.8250  0.7690  13  
Levenberg-Marquardt 12.7840  0.7750  24  

VBHN330
SA16 

Newton-Raphson 15.4235  0.9630  10  
Powell 15.3770  0.9690  12  

Levenberg-Marquardt 15.4070  0.9650  26  
 
The full-range emulations of the PV characteristic 

curves are therefore obtained by substituting these 
parameter values into (4) . Figures 4 – 9 show the 
comparison of the superellipse model curves and the 
datasheet curves.  

By the IEC EN 50530 standard, all reconstructed PV 
characteristic curves maintain the 1% absolute error 
within the vicinity of MPP. Regardless of the cell type, 
Powell’s method achieves the highest model accuracy 
within the vicinity of MPP.     

 
Fig. 4. Comparison of the full-range approximation of the KC200GT I-

V curve. 
 

 
Fig. 5. Comparison of the full-range approximation of the KC200GT P-

V curve. 
 

 
Fig. 6. Comparison of the full-range approximation of the 

VBHN330SA16 I-V curve. 
 

Cell Type PV Panel  mpV V   mpI A   ocV V   scI A  

Multicrystaline KC200GT 26.30  7.61  32.90  8.21  
Ultra-thin 
amorphous VBHN330SA16 58.00  5.70  69.70  6.07  
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Fig. 7. Comparison of the full-range approximation of the 

VBHN330SA16 P-V curve. 
 

TABLE III 
ACCURACY OF THE PROPOSED MODEL WITHIN THE VICINITY OF MPP 

FOR TWO DIFFERENT PV PANEL  

PV Panel Optimization 
Algorithm  mpV V   mpI A   mpP W   %I   %P  

KC200GT 

Datasheet 
Data 26.2795  7.6203  200.2577    

Newton-
Raphson 26.3039  7.6089  200.1437  0.0402  0.0153  

Powell 26.2959  7.6120  200.1647  0.0291  0.0124  
Levenberg-
Marquardt 26.3134  7.6060  200.1389  0.0407  0.0158  

VBHN330S
A16 

Datasheet 
Data 58.6183  5.6738  332.5882    

Newton-
Raphson 58.0067  5.6993  330.6004  0.2658  0.3529  

Powell 58.0067  5.6984  330.5463  0.2561  0.3626  
Levenberg-
Marquardt 58.0067  5.6990  330.5785  0.2619  0.3568  

V.  CONCLUSIONS 
This paper introduces a novel empirical model for 

evaluating the performance of PV panels. By applying the 
well-established datasheet constraints, explicit equations 
describing the full-range approximations of the PV 
characteristic curves and the procedures for extracting 
optimum fitting parameters are clearly defined. Unlike the 
conventional single-diode model which requires five 
fitting parameters at STC, the superellipse model requires 
only two parameters. From the simulation results and 
performance indices, it can be observed that irrespective of 
the PV panel specification or cell type, the superellipse 
model maintains the 1% absolute error within the vicinity 
of MPP.  
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