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Abstract: In this paper, we propose a battery management algorithm to optimize the lifetimes of
retired lithium batteries with heterogeneous states of health in a battery energy storage system under
dynamic power demand. A battery energy storage system allows for the use of retired lithium
batteries for applications such as backup power in homes, data centers, etc. In a battery energy
storage system, a battery pack consists of several retired batteries connected in parallel or in series to
fulfill the required power demand. Owing to the retired batteries’ different capacity levels, i.e., states
of health, a scheduling strategy is required to turn battery cells inside the battery pack on and off such
that the secondary lifetimes of the retired batteries are extended. To establish the optimal scheduling
policy, it is necessary to determine the correct states of each battery cell, including the state of charge
and the state of health. To that end, the proposed algorithm first estimates the state of charge and
state of health for all cells based on data measured using an extended Kalman filter. Then, a deep
reinforcement learning scheduling algorithm is implemented to connect/disconnect the battery cells
to/from the battery pack based on their states. Via simulation, we show that the proposed algorithm
estimates the state of charge and state of health of each battery cell with low error and extends the
lifetime of battery packs by 20.6%, compared to methods proposed in previous works.

Keywords: battery management system; battery energy storage system; deep reinforcement learning;
extended Kalman filter; retired lithium-ion batteries; SOH estimation

1. Introduction

Lithium-ion batteries have become an essential component of modern life, powering
everything from smartphones to electric vehicles (EVs) [1]. Their advantages include high
energy efficiency, minimal memory effects, extended lifespans, and low self-discharge rates
compared to other battery types, and they are now widely used [2]. However, lithium-ion
batteries for EVs have a limited lifespan and (eventually, for safety) require replacement
when their capacity drops to 80% or lower [3]. The total amount of retired battery-pack
power is forecast to reach 120 GWh globally by 2030 [4]. This will create a significant
amount of waste and financial burden, particularly as the demand for lithium-ion batteries
continues to grow. As a result, it is becoming increasingly urgent and necessary to identify
solutions to reuse retired lithium-ion batteries.

One promising application for retired lithium-ion batteries is in battery energy storage
systems (BESSs) that can then be used for backup power in homes, EV charging stations,
or telecommunication and data center systems [5]. BESSs have the potential to significantly
reduce the demand for new batteries and can help reduce the environmental impact of
battery production. A battery energy storage system (BESS) has a battery pack in which
multiple batteries are connected in parallel or in series to increase the capacity or voltage
of the battery pack. A switch is added to each battery cell to connect it to or disconnect
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it from the battery pack [6]. Cells in a battery pack have different capacity levels (i.e.,
heterogeneous states of health), which hinders the effective utilization of the batteries and,
consequently, affects the performance of the battery pack. A scheduling policy is required
to control the switches in battery cells to prolong the lifetime of the battery pack in the
BESS and reduce the imbalanced capacities of battery cells.

For an optimal scheduling policy in a BESS, correct identification of battery character-
istics, including the state of charge (SOC) and state of health (SOH), is important. The SOC
of a battery is the level of charge relative to the battery’s capacity, whereas the SOH is the
ratio of the maximum battery charge to its rated capacity. The relationships between SOC
and SOH are illustrated in Figure 1. Information on SOC and SOH in a scheduling policy
protects the battery cells by preventing them from overcharging or discharging excessively
and increases the capacity of the BESS. SOC and SOH parameters cannot be measured
directly from a battery cell. Instead, they are estimated through measurable parameters
such as voltage, current, and cell temperature. Based on the states of the battery cells in a
pack (including the SOC and SOH), the ON/OFF switches for the batteries in the pack are
scheduled so that the states of health of all batteries are balanced. As a result, the lifetime of
the battery pack is extended. Therefore, the correct estimation of SOC and SOH, along with
the scheduling of battery cell switches, is necessary to optimize the performance of a BESS.

Figure 1. The relationships between state of charge and state of health.

Battery state estimation approaches have been explored in the literature. The Coulomb
counting method [7,8] calculates the SOC of cells by counting the amount of charge that
enters or exits a cell. However, the Coulomb counting method was unable to measure the
SOC of cells in an online parallel-connected battery pack following a sharp drop in SOH.
An algorithm was proposed for the online estimation of SOC using deep learning [9], but
this algorithm ignores the estimation of SOH. A neural network was used to estimate SOH
using experimental datasets [10]. However, the authors did not consider SOC estimation.
Information on both SOCs and SOHs of battery cells is required for efficient scheduling of
a battery pack to optimize BESS performance. The authors of [11] proposed joint lithium
battery SOC and SOH estimation using a data-driven method. This approach required a
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large dataset to train the model before operation on site. Kalman filter-based approaches
can estimate SOC and SOH levels [12] but depend on the correctness of electrochemical
impedance spectroscopy (EIS) parameters, including a resistor and one or more resistor–
capacitor (RC) pairs. However, the effect of SOH reduction on EIS parameters is ignored
in Kalman filter approaches [13]. In [14], SOH reduction was considered to reidentify
EIS parameters, but the SOH was updated only offline. Several researchers have studied
the problem of cell scheduling in a parallel-connected battery pack. The authors of [15]
utilized a fuzzy logic control strategy to adjust the number of cells in a circuit in accordance
with the load demand for the purpose of reducing loop current, which leads to battery
inconsistency. In [16], battery resistance degradation was monitored to detect weak cells
and disconnect them from the battery pack. This approach solved the issue of mismatched
characteristics but requires a complex measuring system or incurs a high computational
burden. In [17], the weighted-k round-robin (kRR) scheduling framework was proposed
to extend the lifetime of a battery pack by considering load demand and SOH reduction.
However, kRR-based scheduling can be implemented only for a fixed model, i.e., the
number of cells in the battery pack or the battery models inside the pack cannot change.
In [6], a multiactor–critic method was proposed to solve battery scheduling problems. This
approach prolonged the lifetime of the battery pack and reduced the imbalance between the
batteries but ignored dynamic power demand. In [18], a strategy for a battery management
system was proposed, including SOC estimation using an extended Kalman filter algorithm
and a scheduler to reduce the difference between the SOCs of battery cells. However, SOH
and power demand were not considered in that approach. The main challenge is to
determine the accurate state (i.e., SOC and SOH) of a battery cell in a battery pack, then
schedule the turning ON/OFF of battery cells based on their current states such that the
imbalance in SOHs of cells is reduced.

The main contributions of our work are as follows:

• A scheduling algorithm is proposed to maximize the lifetime of a battery pack consist-
ing of parallel-connected battery cells with heterogeneous states of health in a BESS.

• We define the battery lifetime maximization problem as the reduction in the SOH of a
battery pack that can be achieved by reducing the imbalance in the SOHs of battery
cells in a battery pack.

• A deep reinforcement learning (DRL) framework is implemented in the schedul-
ing algorithm that uses battery cells’ states to set their ON/OFF status and balance
the SOHs.

• To measure the battery cells’ states to schedule their ON/OFF status, an extended
Kalman filter (EKF)-based algorithm is proposed to estimate SOC and SOH.

• A dataset of real measurements is used to determine the accuracy of the proposed
estimation algorithm. The proposed algorithm achieves minimal error compared
to methods proposed in other works. Simulation results show that the proposed
algorithm outperforms previous studies by extending the lifetime of a battery pack
under constant and dynamic power demands.

The remainder of this paper is organized as follows. Section 2 discusses the proposed
parallel-connected battery model and the scheduling issues. Section 3 presents the frame-
work of the proposed combined algorithm, which includes EKF-based and DRL-based
algorithms. Section 4 describes the simulation and presents the results and impacts of the
algorithm. Finally, we conclude this work in Section 5.

For ease of presentation, the key notations listed in Table 1 are used throughout
this paper.
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Table 1. Summary of notations.

Notation Definition

W Operational time
V(tk) Set of measured cell voltages at time tk
I(tk) Set of measured cell currents at time tk
T (tk) Set of measured cell temperatures at time tk
C(tk) Set of cells’ SOC values at time tk
H(tk) Set of cells’ SOH values at time tk

SOHP (tk) SOH of the battery pack at time tk
Vi(tk) Measured terminal voltage of cell i at time tk
Ii(tk) Measured current of cell i at time tk
Ti(tk) Measured cell temperature of cell i at time tk
Xi(tk) ON/OFF switch of cell i

VOi Open-circuit voltage of cell i
Rsi Internal resistance of cell i

Rpi, Cpi Resistor–capacitor pair of cell i
lD(t

j
k) Discharging power load in cycle j up to time tk

lC(t
j
k) Charging power load in cycle j up to time tk

η Efficiencies of the discharging/charging process

2. System Model
2.1. Overall System

In this paper, we consider a parallel-connected BESS [19,20] with a power supply and
a load, as shown in Figure 2. The BESS comprises a battery pack and a battery management
system (BMS) connected to a power supply and a load. We consider a discrete-time model,
where the working time (W) is divided into w time slots such thatW = {tk | k = 1, 2, ..., w}
with durations of ∆t = tk − tk−1.

Figure 2. Implementation of a parallel-connected BESS.

The battery pack consists of N lithium battery cells connected in parallel. A first-order
Thévenin equivalent model is considered for the cells [21]. Cell i ∈ N = {1, 2, ..., N} has
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EIS parameters including an open-circuit voltage (VOi); internal resistance (Rsi); and an RC
pair, which includes a resistor (Rpi) and capacitor (Cpi) connected in parallel. The terminal
voltage of cell i at time t (Vi(t)) is computed as

Vi(tk) = VOi(tk)−Vpi(tk)− Rsi(tk)Ii(tk), (1)

where Vpi(tk) is the polarization voltage applied to the parallel RC network, calculated
as [14]

Vpi(tk) = e
− ∆t

Rpi(tk−1)Cpi(tk−1) Vpi(tk−1) + Rpi(tk−1)
(
1− e

− ∆t
Rpi(tk−1)Cpi(tk−1)

)
Ii(tk−1). (2)

There are N switches corresponding to N cells linking them to the battery circuit.
Xi(tk) shows whether a switch of cell i is connected to a battery circuit or not, such that

Xi(tk) =

{
1, if cell i is ON
0, if cell i is OFF

(3)

Similarly, sets V(tk), I(tk), and T (tk) consist of terminal voltages, currents, and tem-
peratures of all cells at time tk, respectively.

A BMS monitors the states of the battery pack and estimates both the SOC and the
SOH of cells in order to schedule the switches in the battery pack. We mathematically
define the SOC of cell i at time tk as

SOCi(tk) = SOCi(tk−1)−
η∆tIi(tk−1)

Mi(tk)
, (4)

where Mi(tk) is the capacity level of cell i at time (tk), and η is the Coulombic efficiencies
of the discharging or charging process. Similarly, the SOH of cell i at time tk is defined as

SOHi(tk) =
Mi(tk)

Mnew
, (5)

where Mnew is the initial capacity of new cell i. Sets C(tk) and H(tk) consist of the SOCs
and SOHs of all the cells at time tk, respectively. We define the SOH of the battery pack
(SOHP (tk)) as

SOHP (tk) = min
i∈N

(
H(tk)

)
(6)

Power supply and load are used for charging and discharging of the battery pack.
The battery pack current at time tk (IP (tk)) has a positive value when discharging and a
negative value when charging. The battery pack fulfills the load demand when discharging,
then recharges to recover the corresponding amount of power. The process of complete
charging and discharging of a battery pack is referred to as a cycle. During the working
time (W), an arbitrary cycle (j) has multiple time slots based on the power demand. If
time slot tk belongs to cycle j, we consider lD(t

j
k) and lC(t

j
k) to be the amount of power

load when discharging and charging in cycle j, respectively, up to time slot tk, which are
calculated as

lD(t
j
k) =

k

∑
τ=κ

∑
∀i∈N

ηVi(tτ)Ii(tτ)∆t, (7)

and

lC(t
j
k) =

k

∑
τ=κ

∑
∀i∈N

ηVi(tτ)Ii(tτ)∆t. (8)
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where κ represents the slot number when cycle j starts, i.e., cycle j starts at time tκ .

2.2. Problem Formulation

The objective of this paper is to prolong the lifetime of a battery pack by reducing the
rate of aging in cells. To that end, the problem is formulated to minimize the SOH reduction
of the battery pack during working time (W), which is mathematically expressed as

min
w

∑
k=1

∆SOHP (tk)

s.t. ∆SOHP (tk) ≥ 0,

I−min ≤ Ii(tk) ≤ I+max,

SOCmin ≤ SOCi(tk) ≤ SOCmax,

lD(t
j
k) ≥ d(tj

k),

lC(t
j
k) ≥ d(tj

k),

(9)

where ∆SOHP (tk) represents the SOH reduction of the battery pack at time slot tk; I+max and
I−min represent the discharge current and charge current thresholds, respectively; SOCmin
and SOCmax indicate the lower and upper bounds of the SOC, respectively, which are
required to prevent excessive discharging and charging; lD(t

j
k) and lC(t

j
k) represent the

power load in cycle j up until time slot tk when discharging and charging, respectively;
and d(tj

k) indicates the power demand at time slot tk in cycle j. The SOH reduction of the
battery pack at time tk (∆SOHP (tk)) is defined as

∆SOHP (tk) = SOHP (tk−1)− SOHP (tk), (10)

where SOHP (tk−1) and SOHP (tk) denote the SOH of the battery pack at time slots tk−1
and tk, respectively. Since ∆SOHP (tk) is a non-increasing function, we constrain it with

∆SOHP (tk) ≥ 0. (11)

3. The Proposed Algorithm

To tackle the optimization problem (9), we propose a battery-scheduling algorithm
that is run by the BMS. In each time slot, the algorithm first collects measurement data
that include the terminal voltage, current, and temperature of each cell, then estimates the
SOC and the SOH (Algorithm 1) and controls the charging or discharging process of the
BESS based on the load demand (Algorithm 2). Algorithms 1 and 2 return a state vector
consisting of a set of SOC values of cells (C(tk)) a set of SOH values of cells (H(tk)), as well
as the battery pack current (IP (tk)) and power demand (d(tk)), triggering the DRL-based
battery-scheduling algorithm (Algorithm 3). The overall flow of the proposed algorithm
is shown in Figure 3. Each part of the proposed algorithm is discussed in detail in the
subsections below.
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Algorithm 1 EKF-based SOC and SOH estimation

1: Input: Measurement data V(tk), I(tk),T (tk); Data tables
2: Output: C(tk),H(tk)

3: Estimate state vector x̂i(tk) and error covariance P̂i(tk) using (12) and (13)
4: Estimate terminal voltage V̂i(tk) and compute Kalman gain Gi(tk) using (17) and (20)
5: Update xi(tk) and Pi(tk) using (21) and (22)
6: Update SOCi(tk) and Mi(tk)
7: if cycle is completed then
8: Update SOHi(tk) using (23)
9: else

10: SOHi(tk)← SOHi(tk−1)
11: end if

Algorithm 2 The Charge/Discharge Control Algorithm

1: Input: IP (tk), lD(t
j
k), lC(t

j
k), d(tj

k)
2: Output: Discharge or Charge
3: if IP (tk) > 0 and tk ∈ cycle j then ▷ Discharging
4: if lD(t

j
k) ≥ d(tj

k) then
5: Convert discharge to charge
6: else
7: Continue to discharge
8: end if
9: else if IP (tk) < 0 and tk ∈ cycle j then ▷ Charging

10: if lC(t
j
k) ≥ d(tj

k) then
11: Convert charge to discharge ▷ cycle j + 1
12: else
13: Continue to charge
14: end if
15: end if

Algorithm 3 The Deep Q Network Switches Scheduling Algorithm

1: Input: state vector s(tk)
2: Output: Optimal schedule action X (tk)
3: Initialize Replay experience E with capacity M
4: Add ⟨s(tk−1),X (tk−1), r(tk−1), s(tk)⟩ into E
5: Construct main network Q and target network Q̄
6: Initialize Q and Q̄ with random weights
7: Perform a gradient descent to minimize loss function L

(
ϕ(tk)

)
8: if s(t) ∈ K then
9: Select action X (tk) using (30) ▷ Switch ON/OFF

10: else
11: Select action X (tk) randomly
12: end if
13: Compute immediate reward R

(
s(tk),X (tk)

)
using (31)

14: Compute cumulative reward r(tk) using (32)
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Figure 3. Overall flow chart of the proposed algorithm.

3.1. EKF-Based SOC and SOH Estimation

The algorithm estimates the SOC and SOH of each cell in the battery pack to observe
the states of the battery cells using a third-order EKF. To obtain the SOC and SOH of battery
cell i at tk, the algorithm first estimates state vector x̂i(tk) and error covariance P̂i(tk) as

x̂i(tk) = Ai(tk−1)xi(tk−1) + Bi(tk−1)Ii(tk−1), (12)

and

P̂i(tk) = Ai(tk−1)Pi(tk−1)Ai(tk−1)
T , (13)

where xi(tk−1) is the state vector of cell i at time k−1, which is defined as

xi(tk−1) = [SOCi(tk−1), Vpi(tk−1), 1/Mi(tk−1)]
T , (14)

and Ai(tk−1) and Bi(tk−1) denote the transition matrix and the input matrix, respectively,
which are defined as follows

Ai(tk−1) =

1 0 −η∆tIi(tk−1)

0 e
− ∆t

Rpi(tk−1)Cpi(tk−1) 0
0 0 1

, (15)

Bi(tk−1) =

 0

Rpi(tk−1)(1− e
− ∆t

Rpi(tk−1)Cpi(tk−1) )
0

, (16)

where Ii(tk−1) is the measured current of cell i at tk−1. Rsi(tk−1), Rpi(tk−1), and Cpi(tk−1)
are functions of SOCi, SOHi, and Ti, respectively, which are obtained from two-dimensional
look-up tables (A dataset [22] is used to construct look-up tables where Rsi(tk−1), Rpi(tk−1),

and Cpi(tk−1) are exponential functions of SOCi(tk−1), such as
(

x1 exp
(
x2SOCi(tk−1)

)
+ x3

)
,
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and x1, x2, and x3 are real numbers. These real numbers change when SOHi decreases). Then,
the algorithm estimates the terminal voltage (V̂i(tk)), using x̂i(tk) and Jacobian matrices
Ci(tk) and Di(tk) as

V̂i(tk) = Ci(tk)x̂i(tk) + Di(tk)Ii(tk) (17)

Ci(tk) =
[

δVOi(tk)
δSOCi(tk)

−1 0
]

(18)

Di(tk) = −Rsi(tk), (19)

where the open-circuit voltage (VOi(tk)) is identified by exploiting the look-up tables

(VOi(tk) is the ath-order polynomial function of SOCi(tk), which is defined as
(

∑a
b=0 yb(

SOCi(tk)
)b
)

, where yb is a real number that changes when SOHi decreases). The algorithm

calculates the Kalman gain (Gi(tk)) to determine the error between the real, measured value
and the estimated value using (13) as

Gi(tk) = P̂i(tk)Ci(tk)
T
(

Ci(tk)P̂i(tk)Ci(tk)
T
)−1

. (20)

Based on the estimated terminal voltage (V̂i(tk)), estimated state vector (x̂i(tk)), Kalman
gain (Gi(tk)), and measured terminal voltage (Vi(tk)), the algorithm obtains the correct
state vector (xi(tk)) as

xi(tk) = x̂i(tk) + Gi(tk)
(

Vi(tk)− V̂i(tk)
)

. (21)

Similarly, the algorithm corrects error covariance (Pi(tk)) as

Pi(tk) =
(

1− Gi(tk)Ci(tk)
)

P̂i(tk). (22)

From corrected state vector (xi(tk)), the proposed algorithm obtains SOCi(tk) and
Mi(tk). The algorithm updates the SOH of cell i after one cycle (complete charging and
discharging of the battery pack), since the SOH does not decrease after one or several time
slots [23]. The algorithm updates the SOH of cell i at time slot tk as

SOHi(tk) =

 Mj
i(tk)

Mnew
if cycle j is completed;

SOHi(tk−1) otherwise
(23)

where Mj
i(tk) is the effective current capacity (on average) of cell i in cycle j, which has

(k−κ + 1) time slots if cycle j is completed at time slot tk. The effective current capacity
(on average) of cell i is calculated as

Mj
i(tk) =

∑k
τ=κ Mi(tτ)

k−κ + 1
, (24)

where cycle j starts at tκ and ends at tk. Algorithm 1 summarizes the EKF-based estimation
for the SOH and SOC of cells.

3.2. The Charge/Discharge Control Algorithm

To control the process of charging and discharging the battery pack in the BESS,
the algorithm first identifies the process that is underway. If the current of the battery pack
is positive, i.e., IP (tk) > 0, we calculate the amount of electric power discharged in cycle
j lD(t

j
k) using (7). If lD(t

j
k) reaches electrical demand (d(tj

k)), the BMS converts the BESS
process from discharging to charging. Otherwise, the discharge process continues.
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If IP (tk) is negative, the algorithm determines lC(t
j
k) (the amount of electrical power

charged in cycle j) using (8) and compares it with electrical demand (d(tj
k)). If lC(t

j
k) reaches

d(tj
k), the algorithm converts the BESS process from charging to discharging for a new

cycle (j + 1); otherwise, it continues charging. The process of charging and discharging the
battery pack is summarized in Algorithm 2.

3.3. Deep Reinforcement Learning-Based Scheduling Algorithm

A deep Q network (DQN) scheduling algorithm is proposed for the ON/OFF cell
switches in the battery pack. The scheduling algorithm has three elements: state s(tk),
which represents the current state of the BESS; action X (tk), which indicates cell switches
that are ON or OFF; and reward function r(tk) based on action X (tk). The algorithm
selects action X (tk) by interacting with the environment, i.e., the BESS, to perceive the
state of the battery pack (s(tk)) to maximize the cumulative reward (r(tk)), i.e., to minimize
SOH reduction of the battery pack. To choose an optimal schedule as X (tk) for state s(tk),
the algorithm utilizes and updates acquired knowledge (K) using deep reinforcement
learning. That knowledge includes a switch-scheduling policy for the given battery states
and the corresponding scheduling of rewards. The DQN-based scheduling algorithm is
summarized in Algorithm 3.

The algorithm first observes the current environmental state of the battery pack and
obtains state vector s(tk), which is defined as

s(tk) =
[
C(tk), H(tk), IP (tk), d(tk)

]
, (25)

where C(tk) andH(tk) are sets of the SOCs and SOHs of N cells, respectively; IP (tk) is the
load current of the battery pack; and d(tk) is the load demand. Then, the algorithm ini-
tializes knowledge (K) that includes replay experience (E ) with samples ⟨s(tk−1),X (tk−1),
r(tk−1), s(tk)⟩, a main network (Q), and a target network (Q̄) with random weights. Neural
networks Q and Q̄ have the same structure. The algorithm explores actions based on past
experiences to update the acquired knowledge that leads to a long-term benefit. The DQN
updates acquired knowledge (K) by minimizing loss function L(ϕ(tk)) using gradient
descent. The loss function is defined as

L
(
ϕ(tk)

)
← E

[(
Q̄(tk−1)−Q(tk−1)

)2
]

, (26)

which ϕ(tk) is the DQN network parameter (weight of the main network) and is calculated
as

ϕ(tk) = ϕ(tk−1) + α∇L
(
ϕ(tk−1)

)
(27)

where α ∈ (0, 1] is the learning factor. Q(tk−1) shows the expected discounted cumulative
reward after time slot tk−1 in main network Q, and Q̄(tk−1) is the target action value of the
target network (Q̄), which represents the maximum cumulative reward, i.e., the minimum
SOH reduction for the battery pack. Q(tk−1) and Q̄(tk−1) are calculated as

Q(tk−1) = Q
(
s(tk−1),X (tk−1) | ϕ

)
= E

[
r(tk−1) | s(tk−1),X (tk−1)

]
,

(28)

and

Q̄(tk−1) = r(tk−1) + γ max
X (tk)

Q
(
s(tk),X (tk) | ϕ̄

)
, (29)
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where γ ∈ (0, 1] is the discount cumulative factor indicating the degree of emphasis of
future rewards, and ϕ = {ϕ(t1), ϕ(t2), ..., ϕ(tk)} and ϕ̄ = ¯{ϕ(t1), ¯ϕ(t2), ..., ¯ϕ(tk)} represent
the weights of networks Q and Q̄, respectively. After determining the loss based on an
action, the target network (Q̄) copies the weight of the main network (Q), i.e., ϕ̄ = ϕ.

To utilize the past experience in a DQN-based scheduling algorithm, the proposed
algorithm looks at the acquired knowledge (K) to determine whether state s(tk) is in K
or not. If state s(tk) is in K, the algorithm chooses action X (tk) based on an ϵ-greedy
policy, i.e., it chooses a random action with probability p = ϵ or the action with probability
p = 1− ϵ that has the largest value for Q

(
s(tk),X (tk)

)
. Based on the ϵ-greedy policy [24],

action X (tk) is defined as

X (tk) =

{
random action, with p = ϵ

arg maxX (tk)
Q
(
s(tk),X (tk) | ϕ

)
, with p = 1− ϵ

(30)

In the case in which state s(tk) is not in K, scheduling action X (tk) is performed at
random. After taking action X (tk) based on observed state s(tk), the algorithm evaluates
the immediate reward as

R
(
s(tk),X (tk)

)
= E

[
− ∆SOHP (tk)

]
. (31)

Then, the algorithm determines the cumulative reward (r(tk)) by interacting with the
environment and looks for an optimal policy to maximize r(tk). The cumulative reward
(r(tk)) is calculated as

r(tk) = E
[ w

∑
h=k

γhR
(
s(th),X (th)

)]
. (32)

The algorithm minimizes loss function L
(
ϕ(tk)

)
so that action value Q(tk−1) has the

same value as target action value Q̄(tk−1), which also means that the SOH of the battery
pack is optimized. The DQN-based scheduling algorithm is summarized in Algorithm 3,
and the DQN training process is shown in Figure 4.

Figure 4. The training process in the DQN.



Energies 2024, 17, 79 12 of 19

4. Performance Evaluation
4.1. Simulation Environment

The simulation was conducted using a lithium-ion battery model and was imple-
mented in MATLAB and Simulink R2022a. To evaluate the performance of the proposed
algorithm, we consider a parallel-connected battery pack including four lithium 3.7 V/2.2
Ah batteries with heterogeneous states of health (90.01%, 86.77%, 84.13%, and 78.15% corre-
sponding to cells 1 to 4, respectively). MOSFETs with low ON resistance and low power
are installed to connect and disconnect the battery cells from the battery pack. We consider
different power demand conditions to evaluate the effectiveness of the algorithm. Based on
the maximum capacity of a battery pack with new battery cells, we obtain a dynamic power
demand profile by generating values from a uniform distribution across 20% to 60% of the
maximum energy of a battery pack (i.e., between 6.51 Wh and 19.54 Wh). For the constant
power demand, we calculate the mean value of the dynamic power demand profile as

Davg =
1

W

w

∑
k=1

d(tk), (33)

where d(tk) is the power demand at time slot tk, and W is the number of time slots during
working time (W = {tk | k = 1, 2, ..., w}). Figure 5 shows dynamic and constant power
demand profiles. Constant power demand is equal to 13.13 Wh (i.e., 40.32% of the maximum
energy of a new battery pack). We set the load current of the battery pack when discharging
and charging to 8 A.

A dataset compiled by NASA [22] was used to model a first-order Thévenin equivalent
battery model with a reduction in SOH. We also use the dataset to obtain actual SOC and
SOH values, which are compared with the estimated values. The dataset includes 28 lithium
cobalt oxide 18,650 cells with a nominal capacity of 2.2 Ah, including in-cycle measurements
of terminal voltage, current, and cell temperature. The dataset also includes measurements
for discharging capacity and EIS impedance readings. We identify the EIS parameters,
which include VOi, Rsi, Rpi, and Cpi, in the 90% to 60% SOH range using the dataset.

Figure 5. Load demand profile.

The structure of neural networks includes one 10-dimension input layer, two 256-
dimension hidden layers, one 256-dimension LSTM layer, and one 16-dimension output
layer. The input layer consists of 10 elements of the battery state (s(t)), since there are
four battery cells in a battery pack. The output layer consists of 11 cases (There must be at
least two batteries ON at the same time, since we consider 8A current during discharging
and the maximum output current of one battery is 4 A) of schedule action X (t). We set
the learning rate (α) to 0.001, the ϵ-greedy value to 0.9, and the discount factor (γ) to 0.99.
The period of the target network update is 10 time steps. Other simulation parameters are
summarized in Table 2.
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Table 2. Simulation parameters.

Parameter Value

Number of battery cells 4
Battery type Lithium 3.7 V/2.2 Ah

Total capacity (new) 32.56 Wh
Constant power demand 13.13 Wh (40.32%)

Idischarge 8 A
Icharge −8 A

I−min, I+max −4 A, 4 A
SOCmin, SOCmax 10%, 90%

η 1 (discharge)/0.98 (charge)
Total working time (W) 1800 h

∆t 10 min
Capacity M of experience E 500 slots

Learning rate (α) 0.001
ϵ-greedy 0.9

Discount factor (γ) 0.99
Period of target network update 10 time slots

For the performance evaluation, we first verify the accuracy of the estimation algo-
rithm by determining the error between estimated and actual values. Then, we investigate
the effect of the proposed algorithm on the lifetime of a battery pack and the SOHs of the
cells under dynamic and constant loads. To validate the performance of the proposed algo-
rithm, we compare it with methods proposed in previous works, including an enhanced
Coulomb counting method [7], a hybrid statistical data-driven estimation method [11],
and a multi-actor–critic scheduling algorithm [6]. For comparison, we combine the schedul-
ing and estimation algorithms and obtain the BESS performance. We also compare the
proposed estimation algorithm with the enhanced Coulomb counting method and the
hybrid statistical data-driven estimation method. For the sake of simplicity, we denote
the proposed third-order extended Kalman filter (EKF) estimation algorithm as EKFest,
the proposed deep Q network scheduling algorithm as DQNsch, the multi-actor–critic
scheduling algorithm as MACsch, the hybrid statistical data-driven estimation method as
DDest, the enhanced Coulomb counting method as ECest, and simulations without any
scheduling algorithm as Non Schedule.

4.2. State Estimation Verification

To evaluate the performance results of the proposed algorithm in estimating the SOC
and SOH for each cell, we first show the estimated terminal voltage of each cell in a
battery pack. Figure 6 shows the root mean square error (RMSE) between the measured
terminal voltage and the estimated terminal voltage. The RMSE between the measured
and estimated values of the terminal voltage for each cell is close to 0.01 V and remains
small over time. The small difference between measured and estimated terminal voltages
shows that the proposed algorithm accurately models terminal voltage, which leads to a
more accurate estimation of the SOC and SOH of a cell.

The performance results of the proposed algorithm in estimating the SOC and SOH
for each cell in terms of RMSE and mean absolute error (MAE), respectively, are shown
in Figure 7. The proposed estimation algorithm has the lowest RMSE compared to other
works in estimating the SOCs of cells, as shown in Figure 7a. The RMSE between the
actual and estimated values of the SOC for each cell is close to 1% under the proposed
algorithm. The error of the proposed algorithm in estimating the SOHs of the cells is
shown in Figure 7b. The proposed algorithm has an error of less than 0.2% for SOH, which
is 50% less than the other estimation algorithms. ECest shows the worst performance,
degrading over time. Note that the performance of the proposed estimation algorithm
becomes more stable over time. Estimating the SOC and SOH of the cells with low error is
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of great significance in order to obtain optimal ON/OFF cell scheduling that extends the
lifetime of a battery pack.

Figure 6. Root mean square error between actual and estimated terminal voltage using the pro-
posed algorithm.

(a)

(b)

Figure 7. State estimation evaluation: (a) root mean square error of SOC estimation and (b) mean
absolute error of SOH estimation.

4.3. Impact of the Proposed Algorithms on Battery Pack Lifetime

The impact of the proposed algorithm on battery pack lifetime in terms of SOH
reduction under constant and dynamic power demands is evaluated and shown in Figure 8.
The proposed algorithm achieves better performance under both constant and dynamic
power demands compared to other algorithms. The proposed algorithm reduces the SOH
decay in the battery pack by efficiently scheduling the ON/OFF switching of the cells based
on accurate estimation of SOHs and SOCs, resulting in an increase in battery pack lifetime.
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(a) (b)

Figure 8. SOH reduction of the battery pack under (a) constant power demand and (b) dynamic
power demand.

The SOH of the battery pack reaches 60% (the end of its second life (EoL)) after a
working time of 1767 h under constant power demand, which represents a 13.9% increase
in battery pack lifetime compared to previous work (DDest + MACsch). Under dynamic
power demand, battery pack lifetime also increases by 20.6% under the proposed algorithm
compared to previous work. In addition, the difference in the performance of the proposed
algorithm under constant and dynamic power demand is quite small, but the performance
of methods proposed in previous work degrades under dynamic power demand. Hence,
the proposed algorithm can hence efficiently schedule ON/OFF switching of battery cells
to adapt to dynamic power demand.

Compared to DDest + MACsh, the lifetime of the battery pack is higher under EKFest
+ MACsch and DDest + DQNsch. This shows that the proposed estimation algorithm,
as well as the scheduling algorithm, can an impact in extending the lifetime of a battery
pack. DDest + DQNsch achieves better performance than EKFest + MACsch, which means
optimal scheduling is a more dominant factor in prolonging battery pack lifetime. MACsch
achieves worse performance, since it does not consider SOC while scheduling the ON/OFF
cell switches to meet power demand. Without scheduling (Non-Schedule), the lifetime of
the battery pack reduces rapidly because the weakest cell, i.e., the cell with the lowest SOH,
operates continuously.

4.4. Impact of the Proposed Algorithm on Capacity Balancing

The effectiveness of the proposed algorithm in balancing the SOH of cells under
constant and dynamic load demands is shown in Figures 9 and 10, respectively. Without
a scheduling algorithm (Non-Schedule), all the cells in the battery pack are utilized all
the time, irrespective of their SOC and SOH, resulting in imbalanced states of health and
increasing SOH reduction in the battery pack, irrespective of load demand conditions,
as shown in Figures 9a and 10a.

All the algorithms balance the SOH of cells in the battery pack under constant and
dynamic load demands, as shown in Figure 9b–e and Figure 10b–e, respectively. Even
though the methods proposed in other works achieve SOH balancing among battery pack
cells, battery lifetime (the SOH of each cell) decreases rapidly under the other algorithms
compared to the proposed algorithm. This means that with heterogeneous states of health
for cells in a battery pack, the proposed algorithm offers better performance than other
algorithms by extending the second life of battery cells. All the algorithms achieve SOH
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standard deviations close to zero by balancing the capacity of each cell over time under
constant power demand, which can be seen in Figure 9f.

Under dynamic load demand, EKFest + DQNsch achieves more even SOH balancing
and reduces the standard deviation of the cells’ SOHs to zero, while other algorithms fail to
balance the SOHs of cells, except for the DDest + DQNsch, which achieves the second-best
performance, as shown in Figure 10b–f. The SOH of the weakest cell (cell 4, which has
the lowest initial SOH) reaches 60%, while other cells have SOHs of more than 60% under
algorithms proposed in other works, resulting in higher standard deviations and earlier
end of second life of the battery pack. DDest + DQNsch reduces the standard deviation
of SOHs and extends battery life compared to other scheduling algorithms. This shows
the effectiveness of the proposed scheduling algorithm in managing a parallel-connected
BESS, even with a less accurate estimation algorithm. The superior performance of the
proposed algorithm under the different load demand conditions shows the robustness of
the algorithm to load demands.

(a) (b) (c)

(d) (e) (f)

Figure 9. SOH balancing under constant power demand with (a) Non-Schedule, (b) DDest + MACsch,
(c) EKFest + MACsch, (d) DDest + DQNsch, (e) EKFest + DQNsch, and (f) the standard deviation of
SOHs among the cells.

4.5. Impact of Numbers of Batteries on the Proposed Algorithm

We study the impact of the number of parallel-connected batteries for the BESS on the
proposed algorithm under dynamic load demand according to the SOH profiles shown in
Table 3. The SOH profiles of batteries have the same SOH average (84.77%) and standard
deviation (5.02%).

Table 3. SOHs of batteries.

Number of Batteries SOH Profile (%) Total Max. Capacity

3 89.59, 85.14, 79.57 5.59 Ah
4 90.01, 86.77, 84.13, 78.15 7.46 Ah
5 91.05, 87.95, 84.76, 81.95, 78.15 9.32 Ah
6 91.17, 90.05, 84.86, 82.67, 81.65, 78.21 11.19 Ah
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(a) (b) (c)

(d) (e) (f)

Figure 10. SOH balancing under dynamic power demand with (a) Non-Schedule, (b) DDest +
MACsch, (c) EKFest + MACsch, (d) DDest + DQNsch, (e) EKFest + DQNsch, and (f) the standard
deviation of SOHs among the cells.

The performance of the proposed algorithm under different battery conditions in terms
of the operational working time and standard deviation in SOHs is shown in Figure 11. The
proposed algorithm (EKFest + DQNsch) achieves higher operational time (i.e., extends the
second life of a battery pack) compared to other algorithms, as can be seen in Figure 11a.
The proposed algorithm minimizes the SOH reduction of the battery pack in each time slot
by balancing the SOHs of battery cells, thereby extending the battery pack’s lifetime.
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Figure 11. Performance of the scheduling algorithms with different numbers of batteries under dy-
namic power demand: (a) operation time of the battery pack until the SOH reaches 60% and (b) stan-
dard deviation of SOHs among the batteries.

The proposed algorithm achieves the lowest standard deviation with different num-
bers of batteries in a battery pack, as shown in Figure 11b. The standard deviation in
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SOHs increases by a minimal amount under the proposed algorithm with an increase in
the number of batteries compared to other algorithms. The combinations of the proposed
estimation and the proposed scheduling algorithms with the algorithms proposed in pre-
vious works (EKFest + MACsch and DDest + DQNsch) increase the lifetime of a battery
pack and achieve a more uniform SOH balance compared to the combination of previously
proposed algorithms (i.e., DDest + MACsch). This shows the effectiveness of both parts of
the proposed algorithm in the optimization of BESSs. Figure 11 shows that the proposed
algorithm is robust to the number of battery cells in a battery pack in a BESS.

5. Conclusions and Future Work

In this paper, we proposed a DRL-based battery management algorithm to optimize
battery lifetime for retired batteries with heterogeneous SOHs in a parallel-connected BESS.
The proposed algorithm

(i) estimated the SOCs and SOHs of all battery cells using EKF;
(ii) used estimated SOCs and SOHs to represent the state of a BESS for DRL-based

scheduling; and
(iii) controlled the ON/OFF switches of battery cells inside the battery pack utilizing deep

Q network knowledge.

Via simulation, we showed that the proposed algorithm outperformed other proposed
algorithms by showing lower estimation errors for battery cell states and extending the
battery pack’s second life. The proposed algorithm extended the operation time of the
battery pack by 13.9% and 20.6% compared to other algorithms under constant and dynamic
power demand, respectively.

Regarding future work, we will consider a BESS in which multiple battery packs
are connected in series and each battery pack has parallel-connected battery cells. Such
a configuration leads to high dimensions of state space. Furthermore, the deployment
of smart-grid technologies that include energy storage systems [25] requires hundreds of
battery cells connected in parallel or in series in a BESS. In such systems, DRL-based battery
management algorithms can achieve limited performance due to high-dimensional state
space. We will investigate a distributed reinforcement learning approach to counter the
limitations of centralized approaches for large-scale energy storage systems. Additionally,
an experimental setup will be considered to observe the impact of the battery management
algorithm on real systems.
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